What's the the integral of $tan(4x)$?












0














How is $displaystyle int tan(4x) dx = cos^2 (4x)$? Shouldn't it be $ln(sec(4x))$? I don't understand... Please, help.



Thank you.










share|cite|improve this question




















  • 1




    It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
    – Daniel Fischer
    Oct 16 '13 at 11:37
















0














How is $displaystyle int tan(4x) dx = cos^2 (4x)$? Shouldn't it be $ln(sec(4x))$? I don't understand... Please, help.



Thank you.










share|cite|improve this question




















  • 1




    It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
    – Daniel Fischer
    Oct 16 '13 at 11:37














0












0








0







How is $displaystyle int tan(4x) dx = cos^2 (4x)$? Shouldn't it be $ln(sec(4x))$? I don't understand... Please, help.



Thank you.










share|cite|improve this question















How is $displaystyle int tan(4x) dx = cos^2 (4x)$? Shouldn't it be $ln(sec(4x))$? I don't understand... Please, help.



Thank you.







calculus integration indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 24 at 3:27









Rócherz

2,7612721




2,7612721










asked Oct 16 '13 at 11:35









Joshua Ree

1813617




1813617








  • 1




    It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
    – Daniel Fischer
    Oct 16 '13 at 11:37














  • 1




    It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
    – Daniel Fischer
    Oct 16 '13 at 11:37








1




1




It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
– Daniel Fischer
Oct 16 '13 at 11:37




It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
– Daniel Fischer
Oct 16 '13 at 11:37










3 Answers
3






active

oldest

votes


















1














$$inttan x,dx=-logcos x +C=logsec x+Cimplies$$



$$inttan 4x,dx=frac14int (4dx)tan 4x=frac14logsec 4x+C$$






share|cite|improve this answer





























    1














    This is a correct method for the function as stated above,



    begin{eqnarray}
    int tan(4x)dx &=& frac{1}{4}ln (sec(4x)) + C.
    end{eqnarray}






    share|cite|improve this answer





























      1














      $$
      int{tan(4x)dx}=intfrac{sin(4x)dx}{cos(4x)}=|u=cos(4x)Rightarrow -4sin(4x)dx=dtRightarrow sin(4x)dx=-frac{1}{4}dt|
      $$
      $$
      =-frac{1}{4}intfrac{dt}{t}=-frac{1}{4}ln|t|=-frac{1}{4}ln|cos(4x)|=frac{1}{4}(-1)ln|cos(4x)|=frac{1}{4}ln|cos(4x)|^{-1}
      $$
      $$
      =frac{1}{4}ln|frac{1}{cos(4x)}|=frac{1}{4}ln|sec(4x)|+C
      $$






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f528362%2fwhats-the-the-integral-of-tan4x%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1














        $$inttan x,dx=-logcos x +C=logsec x+Cimplies$$



        $$inttan 4x,dx=frac14int (4dx)tan 4x=frac14logsec 4x+C$$






        share|cite|improve this answer


























          1














          $$inttan x,dx=-logcos x +C=logsec x+Cimplies$$



          $$inttan 4x,dx=frac14int (4dx)tan 4x=frac14logsec 4x+C$$






          share|cite|improve this answer
























            1












            1








            1






            $$inttan x,dx=-logcos x +C=logsec x+Cimplies$$



            $$inttan 4x,dx=frac14int (4dx)tan 4x=frac14logsec 4x+C$$






            share|cite|improve this answer












            $$inttan x,dx=-logcos x +C=logsec x+Cimplies$$



            $$inttan 4x,dx=frac14int (4dx)tan 4x=frac14logsec 4x+C$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Oct 16 '13 at 11:38









            DonAntonio

            176k1491225




            176k1491225























                1














                This is a correct method for the function as stated above,



                begin{eqnarray}
                int tan(4x)dx &=& frac{1}{4}ln (sec(4x)) + C.
                end{eqnarray}






                share|cite|improve this answer


























                  1














                  This is a correct method for the function as stated above,



                  begin{eqnarray}
                  int tan(4x)dx &=& frac{1}{4}ln (sec(4x)) + C.
                  end{eqnarray}






                  share|cite|improve this answer
























                    1












                    1








                    1






                    This is a correct method for the function as stated above,



                    begin{eqnarray}
                    int tan(4x)dx &=& frac{1}{4}ln (sec(4x)) + C.
                    end{eqnarray}






                    share|cite|improve this answer












                    This is a correct method for the function as stated above,



                    begin{eqnarray}
                    int tan(4x)dx &=& frac{1}{4}ln (sec(4x)) + C.
                    end{eqnarray}







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Oct 16 '13 at 11:40









                    Autolatry

                    2,69111015




                    2,69111015























                        1














                        $$
                        int{tan(4x)dx}=intfrac{sin(4x)dx}{cos(4x)}=|u=cos(4x)Rightarrow -4sin(4x)dx=dtRightarrow sin(4x)dx=-frac{1}{4}dt|
                        $$
                        $$
                        =-frac{1}{4}intfrac{dt}{t}=-frac{1}{4}ln|t|=-frac{1}{4}ln|cos(4x)|=frac{1}{4}(-1)ln|cos(4x)|=frac{1}{4}ln|cos(4x)|^{-1}
                        $$
                        $$
                        =frac{1}{4}ln|frac{1}{cos(4x)}|=frac{1}{4}ln|sec(4x)|+C
                        $$






                        share|cite|improve this answer


























                          1














                          $$
                          int{tan(4x)dx}=intfrac{sin(4x)dx}{cos(4x)}=|u=cos(4x)Rightarrow -4sin(4x)dx=dtRightarrow sin(4x)dx=-frac{1}{4}dt|
                          $$
                          $$
                          =-frac{1}{4}intfrac{dt}{t}=-frac{1}{4}ln|t|=-frac{1}{4}ln|cos(4x)|=frac{1}{4}(-1)ln|cos(4x)|=frac{1}{4}ln|cos(4x)|^{-1}
                          $$
                          $$
                          =frac{1}{4}ln|frac{1}{cos(4x)}|=frac{1}{4}ln|sec(4x)|+C
                          $$






                          share|cite|improve this answer
























                            1












                            1








                            1






                            $$
                            int{tan(4x)dx}=intfrac{sin(4x)dx}{cos(4x)}=|u=cos(4x)Rightarrow -4sin(4x)dx=dtRightarrow sin(4x)dx=-frac{1}{4}dt|
                            $$
                            $$
                            =-frac{1}{4}intfrac{dt}{t}=-frac{1}{4}ln|t|=-frac{1}{4}ln|cos(4x)|=frac{1}{4}(-1)ln|cos(4x)|=frac{1}{4}ln|cos(4x)|^{-1}
                            $$
                            $$
                            =frac{1}{4}ln|frac{1}{cos(4x)}|=frac{1}{4}ln|sec(4x)|+C
                            $$






                            share|cite|improve this answer












                            $$
                            int{tan(4x)dx}=intfrac{sin(4x)dx}{cos(4x)}=|u=cos(4x)Rightarrow -4sin(4x)dx=dtRightarrow sin(4x)dx=-frac{1}{4}dt|
                            $$
                            $$
                            =-frac{1}{4}intfrac{dt}{t}=-frac{1}{4}ln|t|=-frac{1}{4}ln|cos(4x)|=frac{1}{4}(-1)ln|cos(4x)|=frac{1}{4}ln|cos(4x)|^{-1}
                            $$
                            $$
                            =frac{1}{4}ln|frac{1}{cos(4x)}|=frac{1}{4}ln|sec(4x)|+C
                            $$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Oct 16 '13 at 12:15









                            Madrit Zhaku

                            4,79621019




                            4,79621019






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f528362%2fwhats-the-the-integral-of-tan4x%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Plaza Victoria

                                Puebla de Zaragoza

                                Musa