What's the the integral of $tan(4x)$?
How is $displaystyle int tan(4x) dx = cos^2 (4x)$? Shouldn't it be $ln(sec(4x))$? I don't understand... Please, help.
Thank you.
calculus integration indefinite-integrals
add a comment |
How is $displaystyle int tan(4x) dx = cos^2 (4x)$? Shouldn't it be $ln(sec(4x))$? I don't understand... Please, help.
Thank you.
calculus integration indefinite-integrals
1
It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
– Daniel Fischer♦
Oct 16 '13 at 11:37
add a comment |
How is $displaystyle int tan(4x) dx = cos^2 (4x)$? Shouldn't it be $ln(sec(4x))$? I don't understand... Please, help.
Thank you.
calculus integration indefinite-integrals
How is $displaystyle int tan(4x) dx = cos^2 (4x)$? Shouldn't it be $ln(sec(4x))$? I don't understand... Please, help.
Thank you.
calculus integration indefinite-integrals
calculus integration indefinite-integrals
edited Nov 24 at 3:27
Rócherz
2,7612721
2,7612721
asked Oct 16 '13 at 11:35
Joshua Ree
1813617
1813617
1
It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
– Daniel Fischer♦
Oct 16 '13 at 11:37
add a comment |
1
It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
– Daniel Fischer♦
Oct 16 '13 at 11:37
1
1
It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
– Daniel Fischer♦
Oct 16 '13 at 11:37
It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
– Daniel Fischer♦
Oct 16 '13 at 11:37
add a comment |
3 Answers
3
active
oldest
votes
$$inttan x,dx=-logcos x +C=logsec x+Cimplies$$
$$inttan 4x,dx=frac14int (4dx)tan 4x=frac14logsec 4x+C$$
add a comment |
This is a correct method for the function as stated above,
begin{eqnarray}
int tan(4x)dx &=& frac{1}{4}ln (sec(4x)) + C.
end{eqnarray}
add a comment |
$$
int{tan(4x)dx}=intfrac{sin(4x)dx}{cos(4x)}=|u=cos(4x)Rightarrow -4sin(4x)dx=dtRightarrow sin(4x)dx=-frac{1}{4}dt|
$$
$$
=-frac{1}{4}intfrac{dt}{t}=-frac{1}{4}ln|t|=-frac{1}{4}ln|cos(4x)|=frac{1}{4}(-1)ln|cos(4x)|=frac{1}{4}ln|cos(4x)|^{-1}
$$
$$
=frac{1}{4}ln|frac{1}{cos(4x)}|=frac{1}{4}ln|sec(4x)|+C
$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f528362%2fwhats-the-the-integral-of-tan4x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$$inttan x,dx=-logcos x +C=logsec x+Cimplies$$
$$inttan 4x,dx=frac14int (4dx)tan 4x=frac14logsec 4x+C$$
add a comment |
$$inttan x,dx=-logcos x +C=logsec x+Cimplies$$
$$inttan 4x,dx=frac14int (4dx)tan 4x=frac14logsec 4x+C$$
add a comment |
$$inttan x,dx=-logcos x +C=logsec x+Cimplies$$
$$inttan 4x,dx=frac14int (4dx)tan 4x=frac14logsec 4x+C$$
$$inttan x,dx=-logcos x +C=logsec x+Cimplies$$
$$inttan 4x,dx=frac14int (4dx)tan 4x=frac14logsec 4x+C$$
answered Oct 16 '13 at 11:38
DonAntonio
176k1491225
176k1491225
add a comment |
add a comment |
This is a correct method for the function as stated above,
begin{eqnarray}
int tan(4x)dx &=& frac{1}{4}ln (sec(4x)) + C.
end{eqnarray}
add a comment |
This is a correct method for the function as stated above,
begin{eqnarray}
int tan(4x)dx &=& frac{1}{4}ln (sec(4x)) + C.
end{eqnarray}
add a comment |
This is a correct method for the function as stated above,
begin{eqnarray}
int tan(4x)dx &=& frac{1}{4}ln (sec(4x)) + C.
end{eqnarray}
This is a correct method for the function as stated above,
begin{eqnarray}
int tan(4x)dx &=& frac{1}{4}ln (sec(4x)) + C.
end{eqnarray}
answered Oct 16 '13 at 11:40
Autolatry
2,69111015
2,69111015
add a comment |
add a comment |
$$
int{tan(4x)dx}=intfrac{sin(4x)dx}{cos(4x)}=|u=cos(4x)Rightarrow -4sin(4x)dx=dtRightarrow sin(4x)dx=-frac{1}{4}dt|
$$
$$
=-frac{1}{4}intfrac{dt}{t}=-frac{1}{4}ln|t|=-frac{1}{4}ln|cos(4x)|=frac{1}{4}(-1)ln|cos(4x)|=frac{1}{4}ln|cos(4x)|^{-1}
$$
$$
=frac{1}{4}ln|frac{1}{cos(4x)}|=frac{1}{4}ln|sec(4x)|+C
$$
add a comment |
$$
int{tan(4x)dx}=intfrac{sin(4x)dx}{cos(4x)}=|u=cos(4x)Rightarrow -4sin(4x)dx=dtRightarrow sin(4x)dx=-frac{1}{4}dt|
$$
$$
=-frac{1}{4}intfrac{dt}{t}=-frac{1}{4}ln|t|=-frac{1}{4}ln|cos(4x)|=frac{1}{4}(-1)ln|cos(4x)|=frac{1}{4}ln|cos(4x)|^{-1}
$$
$$
=frac{1}{4}ln|frac{1}{cos(4x)}|=frac{1}{4}ln|sec(4x)|+C
$$
add a comment |
$$
int{tan(4x)dx}=intfrac{sin(4x)dx}{cos(4x)}=|u=cos(4x)Rightarrow -4sin(4x)dx=dtRightarrow sin(4x)dx=-frac{1}{4}dt|
$$
$$
=-frac{1}{4}intfrac{dt}{t}=-frac{1}{4}ln|t|=-frac{1}{4}ln|cos(4x)|=frac{1}{4}(-1)ln|cos(4x)|=frac{1}{4}ln|cos(4x)|^{-1}
$$
$$
=frac{1}{4}ln|frac{1}{cos(4x)}|=frac{1}{4}ln|sec(4x)|+C
$$
$$
int{tan(4x)dx}=intfrac{sin(4x)dx}{cos(4x)}=|u=cos(4x)Rightarrow -4sin(4x)dx=dtRightarrow sin(4x)dx=-frac{1}{4}dt|
$$
$$
=-frac{1}{4}intfrac{dt}{t}=-frac{1}{4}ln|t|=-frac{1}{4}ln|cos(4x)|=frac{1}{4}(-1)ln|cos(4x)|=frac{1}{4}ln|cos(4x)|^{-1}
$$
$$
=frac{1}{4}ln|frac{1}{cos(4x)}|=frac{1}{4}ln|sec(4x)|+C
$$
answered Oct 16 '13 at 12:15
Madrit Zhaku
4,79621019
4,79621019
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f528362%2fwhats-the-the-integral-of-tan4x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
It isn't. The $ln sec (4x)$ is also not right, but that misses only a constant factor ($frac14$) and the arbitrary integration constant.
– Daniel Fischer♦
Oct 16 '13 at 11:37