Determining $lim_{(x, y) to (2y, y)} exp(frac{|x-2y|}{(x-2y)^2})$
$begingroup$
Find the limit of $$expleft(frac{|x-2y|}{(x-2y)^2}right)$$ when $(x,y) to (2y,y)$.
I have considered two cases: $(x-2y)<0 $ and $(x-2y)>0$.
But in first case the limit turns out to be $0$ and in the second case limit is undefined. I am not sure if my solution is correct or not.
calculus
$endgroup$
add a comment |
$begingroup$
Find the limit of $$expleft(frac{|x-2y|}{(x-2y)^2}right)$$ when $(x,y) to (2y,y)$.
I have considered two cases: $(x-2y)<0 $ and $(x-2y)>0$.
But in first case the limit turns out to be $0$ and in the second case limit is undefined. I am not sure if my solution is correct or not.
calculus
$endgroup$
1
$begingroup$
hint $(x-2y)^2=|x-2y|^2$
$endgroup$
– dmtri
Dec 15 '18 at 8:36
1
$begingroup$
$e^{frac{1}{0}}=infty$ if we go frrom the right of $0$
$endgroup$
– dmtri
Dec 15 '18 at 8:39
add a comment |
$begingroup$
Find the limit of $$expleft(frac{|x-2y|}{(x-2y)^2}right)$$ when $(x,y) to (2y,y)$.
I have considered two cases: $(x-2y)<0 $ and $(x-2y)>0$.
But in first case the limit turns out to be $0$ and in the second case limit is undefined. I am not sure if my solution is correct or not.
calculus
$endgroup$
Find the limit of $$expleft(frac{|x-2y|}{(x-2y)^2}right)$$ when $(x,y) to (2y,y)$.
I have considered two cases: $(x-2y)<0 $ and $(x-2y)>0$.
But in first case the limit turns out to be $0$ and in the second case limit is undefined. I am not sure if my solution is correct or not.
calculus
calculus
edited Dec 15 '18 at 14:27
Namaste
1
1
asked Dec 15 '18 at 8:24
KashmiraKashmira
463
463
1
$begingroup$
hint $(x-2y)^2=|x-2y|^2$
$endgroup$
– dmtri
Dec 15 '18 at 8:36
1
$begingroup$
$e^{frac{1}{0}}=infty$ if we go frrom the right of $0$
$endgroup$
– dmtri
Dec 15 '18 at 8:39
add a comment |
1
$begingroup$
hint $(x-2y)^2=|x-2y|^2$
$endgroup$
– dmtri
Dec 15 '18 at 8:36
1
$begingroup$
$e^{frac{1}{0}}=infty$ if we go frrom the right of $0$
$endgroup$
– dmtri
Dec 15 '18 at 8:39
1
1
$begingroup$
hint $(x-2y)^2=|x-2y|^2$
$endgroup$
– dmtri
Dec 15 '18 at 8:36
$begingroup$
hint $(x-2y)^2=|x-2y|^2$
$endgroup$
– dmtri
Dec 15 '18 at 8:36
1
1
$begingroup$
$e^{frac{1}{0}}=infty$ if we go frrom the right of $0$
$endgroup$
– dmtri
Dec 15 '18 at 8:39
$begingroup$
$e^{frac{1}{0}}=infty$ if we go frrom the right of $0$
$endgroup$
– dmtri
Dec 15 '18 at 8:39
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It is :
$$lim_{(x,y) to (2y,y)} expleft({frac{|x-2y|}{(x-2y)^2}}right) = lim_{(x,y) to (2y,y)} expleft({frac{|x-2y|}{|x-2y|^2}}right)$$
$$=$$
$$lim_{(x,y) to (2y,y)} expleft({frac{1}{|x-2y|}}right) equiv lim_{z to 0} expleft(frac{1}{|z|} right) = infty$$
$endgroup$
add a comment |
$begingroup$
We have that by $t=x-2y to 0$ we reduce to the simpler
$$large e^{frac{|x-2y|}{(x-2y)^2}}=e^{{|t|}/{t^2}}=e^{{1}/{|t|}}to e^infty=infty$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040269%2fdetermining-lim-x-y-to-2y-y-exp-fracx-2yx-2y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is :
$$lim_{(x,y) to (2y,y)} expleft({frac{|x-2y|}{(x-2y)^2}}right) = lim_{(x,y) to (2y,y)} expleft({frac{|x-2y|}{|x-2y|^2}}right)$$
$$=$$
$$lim_{(x,y) to (2y,y)} expleft({frac{1}{|x-2y|}}right) equiv lim_{z to 0} expleft(frac{1}{|z|} right) = infty$$
$endgroup$
add a comment |
$begingroup$
It is :
$$lim_{(x,y) to (2y,y)} expleft({frac{|x-2y|}{(x-2y)^2}}right) = lim_{(x,y) to (2y,y)} expleft({frac{|x-2y|}{|x-2y|^2}}right)$$
$$=$$
$$lim_{(x,y) to (2y,y)} expleft({frac{1}{|x-2y|}}right) equiv lim_{z to 0} expleft(frac{1}{|z|} right) = infty$$
$endgroup$
add a comment |
$begingroup$
It is :
$$lim_{(x,y) to (2y,y)} expleft({frac{|x-2y|}{(x-2y)^2}}right) = lim_{(x,y) to (2y,y)} expleft({frac{|x-2y|}{|x-2y|^2}}right)$$
$$=$$
$$lim_{(x,y) to (2y,y)} expleft({frac{1}{|x-2y|}}right) equiv lim_{z to 0} expleft(frac{1}{|z|} right) = infty$$
$endgroup$
It is :
$$lim_{(x,y) to (2y,y)} expleft({frac{|x-2y|}{(x-2y)^2}}right) = lim_{(x,y) to (2y,y)} expleft({frac{|x-2y|}{|x-2y|^2}}right)$$
$$=$$
$$lim_{(x,y) to (2y,y)} expleft({frac{1}{|x-2y|}}right) equiv lim_{z to 0} expleft(frac{1}{|z|} right) = infty$$
answered Dec 15 '18 at 8:53
RebellosRebellos
15.1k31250
15.1k31250
add a comment |
add a comment |
$begingroup$
We have that by $t=x-2y to 0$ we reduce to the simpler
$$large e^{frac{|x-2y|}{(x-2y)^2}}=e^{{|t|}/{t^2}}=e^{{1}/{|t|}}to e^infty=infty$$
$endgroup$
add a comment |
$begingroup$
We have that by $t=x-2y to 0$ we reduce to the simpler
$$large e^{frac{|x-2y|}{(x-2y)^2}}=e^{{|t|}/{t^2}}=e^{{1}/{|t|}}to e^infty=infty$$
$endgroup$
add a comment |
$begingroup$
We have that by $t=x-2y to 0$ we reduce to the simpler
$$large e^{frac{|x-2y|}{(x-2y)^2}}=e^{{|t|}/{t^2}}=e^{{1}/{|t|}}to e^infty=infty$$
$endgroup$
We have that by $t=x-2y to 0$ we reduce to the simpler
$$large e^{frac{|x-2y|}{(x-2y)^2}}=e^{{|t|}/{t^2}}=e^{{1}/{|t|}}to e^infty=infty$$
answered Dec 15 '18 at 10:05
gimusigimusi
92.9k84494
92.9k84494
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040269%2fdetermining-lim-x-y-to-2y-y-exp-fracx-2yx-2y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
hint $(x-2y)^2=|x-2y|^2$
$endgroup$
– dmtri
Dec 15 '18 at 8:36
1
$begingroup$
$e^{frac{1}{0}}=infty$ if we go frrom the right of $0$
$endgroup$
– dmtri
Dec 15 '18 at 8:39