Prove that $1^2 cdot 3^2 cdot 5^2cdots (p-2)^2equiv (-1)^{frac{p+1}{2}} pmod p$












0














$1^2 cdot 3^2 cdot 5^2cdots (p-2)^2equiv (-1)^{frac{p+1}{2}}pmod p$



I saw that I can use Wilson's theorem that $(p-1)!equiv -1 pmod p$ and that they change something, they said put on even number $frac{p+1}{2}$ so now you prove it but I do not understand can you help me?










share|cite|improve this question





























    0














    $1^2 cdot 3^2 cdot 5^2cdots (p-2)^2equiv (-1)^{frac{p+1}{2}}pmod p$



    I saw that I can use Wilson's theorem that $(p-1)!equiv -1 pmod p$ and that they change something, they said put on even number $frac{p+1}{2}$ so now you prove it but I do not understand can you help me?










    share|cite|improve this question



























      0












      0








      0







      $1^2 cdot 3^2 cdot 5^2cdots (p-2)^2equiv (-1)^{frac{p+1}{2}}pmod p$



      I saw that I can use Wilson's theorem that $(p-1)!equiv -1 pmod p$ and that they change something, they said put on even number $frac{p+1}{2}$ so now you prove it but I do not understand can you help me?










      share|cite|improve this question















      $1^2 cdot 3^2 cdot 5^2cdots (p-2)^2equiv (-1)^{frac{p+1}{2}}pmod p$



      I saw that I can use Wilson's theorem that $(p-1)!equiv -1 pmod p$ and that they change something, they said put on even number $frac{p+1}{2}$ so now you prove it but I do not understand can you help me?







      discrete-mathematics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 25 '18 at 20:47









      Jean-Claude Arbaut

      14.7k63464




      14.7k63464










      asked Nov 25 '18 at 20:31









      Marko Škorić

      70310




      70310






















          1 Answer
          1






          active

          oldest

          votes


















          3














          We work in the field $Bbb F_p$ with $p$ elements. (Same as $Bbb Z/p$, for the given prime $p$, i suppose it is a prime.)



          Then
          $$
          begin{aligned}
          -1 &= 1cdot 2cdot 3cdot 4cdot 5cdot 6cdot dots cdot (p-2)cdot(p-1)
          \
          &=1color{red}{cdot (-2)}cdot 3color{red}{cdot (-4)}cdot 5color{red}{cdot (-6)}cdot dots cdot (p-2)color{red}{cdot(-(p-1))}
          color{blue}{cdot(-1)^{(p-1)/2}}
          \
          &=1cdot 3cdot 5cdot dots cdot (p-2)
          color{red}{cdot (-2)cdot (-4)cdot (-6)cdot dots cdot(-(p-1))}
          color{blue}{cdot(-1)^{(p-1)/2}}
          \
          &=1cdot 3cdot 5cdot dots cdot (p-2)
          color{red}{cdot (p-2)cdot (p-4)cdot (p-6)cdot dots cdot(p-(p-1))}
          color{blue}{cdot(-1)^{(p-1)/2}}
          \
          &=(1cdot 3cdot 5cdot dots cdot (p-2))^2
          color{blue}{cdot(-1)^{(p-1)/2}}
          .
          end{aligned}
          $$

          This leads to the answer...






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013352%2fprove-that-12-cdot-32-cdot-52-cdots-p-22-equiv-1-fracp12-pm%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3














            We work in the field $Bbb F_p$ with $p$ elements. (Same as $Bbb Z/p$, for the given prime $p$, i suppose it is a prime.)



            Then
            $$
            begin{aligned}
            -1 &= 1cdot 2cdot 3cdot 4cdot 5cdot 6cdot dots cdot (p-2)cdot(p-1)
            \
            &=1color{red}{cdot (-2)}cdot 3color{red}{cdot (-4)}cdot 5color{red}{cdot (-6)}cdot dots cdot (p-2)color{red}{cdot(-(p-1))}
            color{blue}{cdot(-1)^{(p-1)/2}}
            \
            &=1cdot 3cdot 5cdot dots cdot (p-2)
            color{red}{cdot (-2)cdot (-4)cdot (-6)cdot dots cdot(-(p-1))}
            color{blue}{cdot(-1)^{(p-1)/2}}
            \
            &=1cdot 3cdot 5cdot dots cdot (p-2)
            color{red}{cdot (p-2)cdot (p-4)cdot (p-6)cdot dots cdot(p-(p-1))}
            color{blue}{cdot(-1)^{(p-1)/2}}
            \
            &=(1cdot 3cdot 5cdot dots cdot (p-2))^2
            color{blue}{cdot(-1)^{(p-1)/2}}
            .
            end{aligned}
            $$

            This leads to the answer...






            share|cite|improve this answer


























              3














              We work in the field $Bbb F_p$ with $p$ elements. (Same as $Bbb Z/p$, for the given prime $p$, i suppose it is a prime.)



              Then
              $$
              begin{aligned}
              -1 &= 1cdot 2cdot 3cdot 4cdot 5cdot 6cdot dots cdot (p-2)cdot(p-1)
              \
              &=1color{red}{cdot (-2)}cdot 3color{red}{cdot (-4)}cdot 5color{red}{cdot (-6)}cdot dots cdot (p-2)color{red}{cdot(-(p-1))}
              color{blue}{cdot(-1)^{(p-1)/2}}
              \
              &=1cdot 3cdot 5cdot dots cdot (p-2)
              color{red}{cdot (-2)cdot (-4)cdot (-6)cdot dots cdot(-(p-1))}
              color{blue}{cdot(-1)^{(p-1)/2}}
              \
              &=1cdot 3cdot 5cdot dots cdot (p-2)
              color{red}{cdot (p-2)cdot (p-4)cdot (p-6)cdot dots cdot(p-(p-1))}
              color{blue}{cdot(-1)^{(p-1)/2}}
              \
              &=(1cdot 3cdot 5cdot dots cdot (p-2))^2
              color{blue}{cdot(-1)^{(p-1)/2}}
              .
              end{aligned}
              $$

              This leads to the answer...






              share|cite|improve this answer
























                3












                3








                3






                We work in the field $Bbb F_p$ with $p$ elements. (Same as $Bbb Z/p$, for the given prime $p$, i suppose it is a prime.)



                Then
                $$
                begin{aligned}
                -1 &= 1cdot 2cdot 3cdot 4cdot 5cdot 6cdot dots cdot (p-2)cdot(p-1)
                \
                &=1color{red}{cdot (-2)}cdot 3color{red}{cdot (-4)}cdot 5color{red}{cdot (-6)}cdot dots cdot (p-2)color{red}{cdot(-(p-1))}
                color{blue}{cdot(-1)^{(p-1)/2}}
                \
                &=1cdot 3cdot 5cdot dots cdot (p-2)
                color{red}{cdot (-2)cdot (-4)cdot (-6)cdot dots cdot(-(p-1))}
                color{blue}{cdot(-1)^{(p-1)/2}}
                \
                &=1cdot 3cdot 5cdot dots cdot (p-2)
                color{red}{cdot (p-2)cdot (p-4)cdot (p-6)cdot dots cdot(p-(p-1))}
                color{blue}{cdot(-1)^{(p-1)/2}}
                \
                &=(1cdot 3cdot 5cdot dots cdot (p-2))^2
                color{blue}{cdot(-1)^{(p-1)/2}}
                .
                end{aligned}
                $$

                This leads to the answer...






                share|cite|improve this answer












                We work in the field $Bbb F_p$ with $p$ elements. (Same as $Bbb Z/p$, for the given prime $p$, i suppose it is a prime.)



                Then
                $$
                begin{aligned}
                -1 &= 1cdot 2cdot 3cdot 4cdot 5cdot 6cdot dots cdot (p-2)cdot(p-1)
                \
                &=1color{red}{cdot (-2)}cdot 3color{red}{cdot (-4)}cdot 5color{red}{cdot (-6)}cdot dots cdot (p-2)color{red}{cdot(-(p-1))}
                color{blue}{cdot(-1)^{(p-1)/2}}
                \
                &=1cdot 3cdot 5cdot dots cdot (p-2)
                color{red}{cdot (-2)cdot (-4)cdot (-6)cdot dots cdot(-(p-1))}
                color{blue}{cdot(-1)^{(p-1)/2}}
                \
                &=1cdot 3cdot 5cdot dots cdot (p-2)
                color{red}{cdot (p-2)cdot (p-4)cdot (p-6)cdot dots cdot(p-(p-1))}
                color{blue}{cdot(-1)^{(p-1)/2}}
                \
                &=(1cdot 3cdot 5cdot dots cdot (p-2))^2
                color{blue}{cdot(-1)^{(p-1)/2}}
                .
                end{aligned}
                $$

                This leads to the answer...







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 25 '18 at 20:44









                dan_fulea

                6,2301312




                6,2301312






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013352%2fprove-that-12-cdot-32-cdot-52-cdots-p-22-equiv-1-fracp12-pm%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    Puebla de Zaragoza

                    Musa