About $a_0=0, a_1=1$, $a_n=3 frac{a_{n-1}}{n-1} + 2a_{n-2}$ for $n > 1$.
$begingroup$
Let ${a_n}$ be defined by as the following: $a_0=0, a_1=1$
$$a_{n}=3frac{a_{n-1}}{n-1}+2a_{n-2}, forall n > 1$$
For example $a_2=3, a_3=frac{13}{2}$. Is its generating function equal to $$frac{x}{left(1-xsqrt{2}right)^2}cdot left(frac{1+xsqrt{2}}{1-xsqrt{2}}right)^{frac{3}{2sqrt{2}}-1}$$ ?
Let $s,t > 0$. Let ${b_n}$ be defined by as the following: $b_0=0, b_1=1$
$$b_n=scdot frac{b_{n-1}}{n-1} + tcdot b_{n-2}, forall n > 1$$
Is its generating function equal to
$$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{frac{s}{2sqrt{t}}-1}$$ ?
P.S.
$$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}=
frac{x}{s}cdot frac{d}{dx} left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}}$$
I think this generating function is correct.
(17:03) gp > N=26; x='x+O('x^N); Vec(x/(1-2^(1/2)*x)^2 * ((1+2^(1/2)*x)/(1-2^(1/2)*x))^(3/(2^(3/2))-1))
%1 = [1, 3.0000000000000000000000000000000000000, 6.5000000000000000000000000000000000000, 12.500000000000000000000000000000000000, 22.375000000000000000000000000000000000, 38.425000000000000000000000000000000000, 63.962500000000000000000000000000000001, 104.26250000000000000000000000000000000, 167.02343750000000000000000000000000000, 264.19947916666666666666666666666666667, 413.30671875000000000000000000000000000, 641.11897253787878787878787878787878788, 986.89318063446969696969696969696969697, 1509.9825252221736596736596736596736597, 2297.3540452451194638694638694638694638, 3479.4358594933712121212121212121212120, 5247.1023141452460300116550116550116547, 7884.8309508947270177738927738927738924, 11808.343120106279896318958818958818958, 17634.137131279919282334989571831677093, 26261.806809904547684988166073692389480, 39019.960949689059662525431439905124111, 57844.517385675785323957072798280932247, 85584.858949683656541219176723064282863, 126387.14214006202771556654268694489985]
(17:04) gp >
sequences-and-series recurrence-relations
$endgroup$
add a comment |
$begingroup$
Let ${a_n}$ be defined by as the following: $a_0=0, a_1=1$
$$a_{n}=3frac{a_{n-1}}{n-1}+2a_{n-2}, forall n > 1$$
For example $a_2=3, a_3=frac{13}{2}$. Is its generating function equal to $$frac{x}{left(1-xsqrt{2}right)^2}cdot left(frac{1+xsqrt{2}}{1-xsqrt{2}}right)^{frac{3}{2sqrt{2}}-1}$$ ?
Let $s,t > 0$. Let ${b_n}$ be defined by as the following: $b_0=0, b_1=1$
$$b_n=scdot frac{b_{n-1}}{n-1} + tcdot b_{n-2}, forall n > 1$$
Is its generating function equal to
$$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{frac{s}{2sqrt{t}}-1}$$ ?
P.S.
$$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}=
frac{x}{s}cdot frac{d}{dx} left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}}$$
I think this generating function is correct.
(17:03) gp > N=26; x='x+O('x^N); Vec(x/(1-2^(1/2)*x)^2 * ((1+2^(1/2)*x)/(1-2^(1/2)*x))^(3/(2^(3/2))-1))
%1 = [1, 3.0000000000000000000000000000000000000, 6.5000000000000000000000000000000000000, 12.500000000000000000000000000000000000, 22.375000000000000000000000000000000000, 38.425000000000000000000000000000000000, 63.962500000000000000000000000000000001, 104.26250000000000000000000000000000000, 167.02343750000000000000000000000000000, 264.19947916666666666666666666666666667, 413.30671875000000000000000000000000000, 641.11897253787878787878787878787878788, 986.89318063446969696969696969696969697, 1509.9825252221736596736596736596736597, 2297.3540452451194638694638694638694638, 3479.4358594933712121212121212121212120, 5247.1023141452460300116550116550116547, 7884.8309508947270177738927738927738924, 11808.343120106279896318958818958818958, 17634.137131279919282334989571831677093, 26261.806809904547684988166073692389480, 39019.960949689059662525431439905124111, 57844.517385675785323957072798280932247, 85584.858949683656541219176723064282863, 126387.14214006202771556654268694489985]
(17:04) gp >
sequences-and-series recurrence-relations
$endgroup$
add a comment |
$begingroup$
Let ${a_n}$ be defined by as the following: $a_0=0, a_1=1$
$$a_{n}=3frac{a_{n-1}}{n-1}+2a_{n-2}, forall n > 1$$
For example $a_2=3, a_3=frac{13}{2}$. Is its generating function equal to $$frac{x}{left(1-xsqrt{2}right)^2}cdot left(frac{1+xsqrt{2}}{1-xsqrt{2}}right)^{frac{3}{2sqrt{2}}-1}$$ ?
Let $s,t > 0$. Let ${b_n}$ be defined by as the following: $b_0=0, b_1=1$
$$b_n=scdot frac{b_{n-1}}{n-1} + tcdot b_{n-2}, forall n > 1$$
Is its generating function equal to
$$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{frac{s}{2sqrt{t}}-1}$$ ?
P.S.
$$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}=
frac{x}{s}cdot frac{d}{dx} left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}}$$
I think this generating function is correct.
(17:03) gp > N=26; x='x+O('x^N); Vec(x/(1-2^(1/2)*x)^2 * ((1+2^(1/2)*x)/(1-2^(1/2)*x))^(3/(2^(3/2))-1))
%1 = [1, 3.0000000000000000000000000000000000000, 6.5000000000000000000000000000000000000, 12.500000000000000000000000000000000000, 22.375000000000000000000000000000000000, 38.425000000000000000000000000000000000, 63.962500000000000000000000000000000001, 104.26250000000000000000000000000000000, 167.02343750000000000000000000000000000, 264.19947916666666666666666666666666667, 413.30671875000000000000000000000000000, 641.11897253787878787878787878787878788, 986.89318063446969696969696969696969697, 1509.9825252221736596736596736596736597, 2297.3540452451194638694638694638694638, 3479.4358594933712121212121212121212120, 5247.1023141452460300116550116550116547, 7884.8309508947270177738927738927738924, 11808.343120106279896318958818958818958, 17634.137131279919282334989571831677093, 26261.806809904547684988166073692389480, 39019.960949689059662525431439905124111, 57844.517385675785323957072798280932247, 85584.858949683656541219176723064282863, 126387.14214006202771556654268694489985]
(17:04) gp >
sequences-and-series recurrence-relations
$endgroup$
Let ${a_n}$ be defined by as the following: $a_0=0, a_1=1$
$$a_{n}=3frac{a_{n-1}}{n-1}+2a_{n-2}, forall n > 1$$
For example $a_2=3, a_3=frac{13}{2}$. Is its generating function equal to $$frac{x}{left(1-xsqrt{2}right)^2}cdot left(frac{1+xsqrt{2}}{1-xsqrt{2}}right)^{frac{3}{2sqrt{2}}-1}$$ ?
Let $s,t > 0$. Let ${b_n}$ be defined by as the following: $b_0=0, b_1=1$
$$b_n=scdot frac{b_{n-1}}{n-1} + tcdot b_{n-2}, forall n > 1$$
Is its generating function equal to
$$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{frac{s}{2sqrt{t}}-1}$$ ?
P.S.
$$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}=
frac{x}{s}cdot frac{d}{dx} left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}}$$
I think this generating function is correct.
(17:03) gp > N=26; x='x+O('x^N); Vec(x/(1-2^(1/2)*x)^2 * ((1+2^(1/2)*x)/(1-2^(1/2)*x))^(3/(2^(3/2))-1))
%1 = [1, 3.0000000000000000000000000000000000000, 6.5000000000000000000000000000000000000, 12.500000000000000000000000000000000000, 22.375000000000000000000000000000000000, 38.425000000000000000000000000000000000, 63.962500000000000000000000000000000001, 104.26250000000000000000000000000000000, 167.02343750000000000000000000000000000, 264.19947916666666666666666666666666667, 413.30671875000000000000000000000000000, 641.11897253787878787878787878787878788, 986.89318063446969696969696969696969697, 1509.9825252221736596736596736596736597, 2297.3540452451194638694638694638694638, 3479.4358594933712121212121212121212120, 5247.1023141452460300116550116550116547, 7884.8309508947270177738927738927738924, 11808.343120106279896318958818958818958, 17634.137131279919282334989571831677093, 26261.806809904547684988166073692389480, 39019.960949689059662525431439905124111, 57844.517385675785323957072798280932247, 85584.858949683656541219176723064282863, 126387.14214006202771556654268694489985]
(17:04) gp >
sequences-and-series recurrence-relations
sequences-and-series recurrence-relations
edited Dec 16 '18 at 14:27
rtybase
11.5k31534
11.5k31534
asked Dec 16 '18 at 11:22
ManyamaManyama
5021415
5021415
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Incomplete answer. I presume you mean generating function. If so, then
$$f(x)=a_0+a_1x+sumlimits_{n=2}a_nx^n=
x+sumlimits_{n=2}left(3frac{a_{n-1}}{n-1}+2a_{n-2}right)x^n=\
x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2sumlimits_{n=2}a_{n-2}x^n=\
x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2x^2sumlimits_{n=2}a_{n-2}x^{n-2}=\
x+3xsumlimits_{n=2}frac{a_{n-1}}{n-1}x^{n-1}+2x^2f(x)$$
or
$$f(x)left(frac{1-2x^2}{x}right)=1+3sumlimits_{n=1}frac{a_{n}}{n}x^{n}$$
now we derivate
$$left[f(x)left(frac{1-2x^2}{x}right)right]'=3sumlimits_{n=1}a_{n}x^{n-1}=frac{3}{x}sumlimits_{n=1}a_{n}x^{n}=frac{3f(x)}{x}$$
or
$$f'(x)left(frac{1-2x^2}{x}right)-f(x)left(2+frac{1}{x^2}right)=frac{3f(x)}{x}$$
or
$$f'(x)left(1-2x^2right)-f(x)left(2x+frac{1}{x}right)=3f(x)$$
$$f'(x)left(1-2x^2right)=f(x)left(3+2x+frac{1}{x}right)$$
$$frac{f'(x)}{f(x)}=frac{3+2x+frac{1}{x}}{1-2x^2}$$
Solve the differential equation and you have an yes to your first question.
$endgroup$
1
$begingroup$
Thank you. The second question may be proved in the same way as you.
$endgroup$
– Manyama
Dec 16 '18 at 15:30
add a comment |
$begingroup$
Complete answer -rtybase's way-
$$f(x)=b_0+b_1x+sumlimits_{n=2}b_nx^n=
x+sumlimits_{n=2}left(sfrac{b_{n-1}}{n-1}+tb_{n-2}right)x^n=\
x+sxsumlimits_{n=2}frac{b_{n-1}}{n-1}x^{n-1}+tx^2f(x).$$
So
$$f(x)left(frac{1-tx^2}{x}right)=1+ssumlimits_{n=1}frac{b_{n}}{n}x^{n}.$$
Now we derivate
$$left[f(x)left(frac{1-tx^2}{x}right)right]'=frac{s}{x}sumlimits_{n=1}b_{n}x^{n}=frac{sf(x)}{x}.$$
So
$$f'(x)left(frac{1-tx^2}{x}right)-f(x)left(t+frac{1}{x^2}right)=frac{sf(x)}{x}.$$
Hence
$$frac{f'(x)}{f(x)}=frac{tx+s+frac{1}{x}}{1-tx^2}.$$
Solve the differential equation and we have
$$f(x)=frac{x}{1-tx^2} * (frac{1+xsqrt t}{1-xsqrt t})^{frac{s}{2sqrt t}}=
frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042490%2fabout-a-0-0-a-1-1-a-n-3-fraca-n-1n-1-2a-n-2-for-n-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Incomplete answer. I presume you mean generating function. If so, then
$$f(x)=a_0+a_1x+sumlimits_{n=2}a_nx^n=
x+sumlimits_{n=2}left(3frac{a_{n-1}}{n-1}+2a_{n-2}right)x^n=\
x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2sumlimits_{n=2}a_{n-2}x^n=\
x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2x^2sumlimits_{n=2}a_{n-2}x^{n-2}=\
x+3xsumlimits_{n=2}frac{a_{n-1}}{n-1}x^{n-1}+2x^2f(x)$$
or
$$f(x)left(frac{1-2x^2}{x}right)=1+3sumlimits_{n=1}frac{a_{n}}{n}x^{n}$$
now we derivate
$$left[f(x)left(frac{1-2x^2}{x}right)right]'=3sumlimits_{n=1}a_{n}x^{n-1}=frac{3}{x}sumlimits_{n=1}a_{n}x^{n}=frac{3f(x)}{x}$$
or
$$f'(x)left(frac{1-2x^2}{x}right)-f(x)left(2+frac{1}{x^2}right)=frac{3f(x)}{x}$$
or
$$f'(x)left(1-2x^2right)-f(x)left(2x+frac{1}{x}right)=3f(x)$$
$$f'(x)left(1-2x^2right)=f(x)left(3+2x+frac{1}{x}right)$$
$$frac{f'(x)}{f(x)}=frac{3+2x+frac{1}{x}}{1-2x^2}$$
Solve the differential equation and you have an yes to your first question.
$endgroup$
1
$begingroup$
Thank you. The second question may be proved in the same way as you.
$endgroup$
– Manyama
Dec 16 '18 at 15:30
add a comment |
$begingroup$
Incomplete answer. I presume you mean generating function. If so, then
$$f(x)=a_0+a_1x+sumlimits_{n=2}a_nx^n=
x+sumlimits_{n=2}left(3frac{a_{n-1}}{n-1}+2a_{n-2}right)x^n=\
x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2sumlimits_{n=2}a_{n-2}x^n=\
x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2x^2sumlimits_{n=2}a_{n-2}x^{n-2}=\
x+3xsumlimits_{n=2}frac{a_{n-1}}{n-1}x^{n-1}+2x^2f(x)$$
or
$$f(x)left(frac{1-2x^2}{x}right)=1+3sumlimits_{n=1}frac{a_{n}}{n}x^{n}$$
now we derivate
$$left[f(x)left(frac{1-2x^2}{x}right)right]'=3sumlimits_{n=1}a_{n}x^{n-1}=frac{3}{x}sumlimits_{n=1}a_{n}x^{n}=frac{3f(x)}{x}$$
or
$$f'(x)left(frac{1-2x^2}{x}right)-f(x)left(2+frac{1}{x^2}right)=frac{3f(x)}{x}$$
or
$$f'(x)left(1-2x^2right)-f(x)left(2x+frac{1}{x}right)=3f(x)$$
$$f'(x)left(1-2x^2right)=f(x)left(3+2x+frac{1}{x}right)$$
$$frac{f'(x)}{f(x)}=frac{3+2x+frac{1}{x}}{1-2x^2}$$
Solve the differential equation and you have an yes to your first question.
$endgroup$
1
$begingroup$
Thank you. The second question may be proved in the same way as you.
$endgroup$
– Manyama
Dec 16 '18 at 15:30
add a comment |
$begingroup$
Incomplete answer. I presume you mean generating function. If so, then
$$f(x)=a_0+a_1x+sumlimits_{n=2}a_nx^n=
x+sumlimits_{n=2}left(3frac{a_{n-1}}{n-1}+2a_{n-2}right)x^n=\
x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2sumlimits_{n=2}a_{n-2}x^n=\
x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2x^2sumlimits_{n=2}a_{n-2}x^{n-2}=\
x+3xsumlimits_{n=2}frac{a_{n-1}}{n-1}x^{n-1}+2x^2f(x)$$
or
$$f(x)left(frac{1-2x^2}{x}right)=1+3sumlimits_{n=1}frac{a_{n}}{n}x^{n}$$
now we derivate
$$left[f(x)left(frac{1-2x^2}{x}right)right]'=3sumlimits_{n=1}a_{n}x^{n-1}=frac{3}{x}sumlimits_{n=1}a_{n}x^{n}=frac{3f(x)}{x}$$
or
$$f'(x)left(frac{1-2x^2}{x}right)-f(x)left(2+frac{1}{x^2}right)=frac{3f(x)}{x}$$
or
$$f'(x)left(1-2x^2right)-f(x)left(2x+frac{1}{x}right)=3f(x)$$
$$f'(x)left(1-2x^2right)=f(x)left(3+2x+frac{1}{x}right)$$
$$frac{f'(x)}{f(x)}=frac{3+2x+frac{1}{x}}{1-2x^2}$$
Solve the differential equation and you have an yes to your first question.
$endgroup$
Incomplete answer. I presume you mean generating function. If so, then
$$f(x)=a_0+a_1x+sumlimits_{n=2}a_nx^n=
x+sumlimits_{n=2}left(3frac{a_{n-1}}{n-1}+2a_{n-2}right)x^n=\
x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2sumlimits_{n=2}a_{n-2}x^n=\
x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2x^2sumlimits_{n=2}a_{n-2}x^{n-2}=\
x+3xsumlimits_{n=2}frac{a_{n-1}}{n-1}x^{n-1}+2x^2f(x)$$
or
$$f(x)left(frac{1-2x^2}{x}right)=1+3sumlimits_{n=1}frac{a_{n}}{n}x^{n}$$
now we derivate
$$left[f(x)left(frac{1-2x^2}{x}right)right]'=3sumlimits_{n=1}a_{n}x^{n-1}=frac{3}{x}sumlimits_{n=1}a_{n}x^{n}=frac{3f(x)}{x}$$
or
$$f'(x)left(frac{1-2x^2}{x}right)-f(x)left(2+frac{1}{x^2}right)=frac{3f(x)}{x}$$
or
$$f'(x)left(1-2x^2right)-f(x)left(2x+frac{1}{x}right)=3f(x)$$
$$f'(x)left(1-2x^2right)=f(x)left(3+2x+frac{1}{x}right)$$
$$frac{f'(x)}{f(x)}=frac{3+2x+frac{1}{x}}{1-2x^2}$$
Solve the differential equation and you have an yes to your first question.
answered Dec 16 '18 at 13:40
rtybasertybase
11.5k31534
11.5k31534
1
$begingroup$
Thank you. The second question may be proved in the same way as you.
$endgroup$
– Manyama
Dec 16 '18 at 15:30
add a comment |
1
$begingroup$
Thank you. The second question may be proved in the same way as you.
$endgroup$
– Manyama
Dec 16 '18 at 15:30
1
1
$begingroup$
Thank you. The second question may be proved in the same way as you.
$endgroup$
– Manyama
Dec 16 '18 at 15:30
$begingroup$
Thank you. The second question may be proved in the same way as you.
$endgroup$
– Manyama
Dec 16 '18 at 15:30
add a comment |
$begingroup$
Complete answer -rtybase's way-
$$f(x)=b_0+b_1x+sumlimits_{n=2}b_nx^n=
x+sumlimits_{n=2}left(sfrac{b_{n-1}}{n-1}+tb_{n-2}right)x^n=\
x+sxsumlimits_{n=2}frac{b_{n-1}}{n-1}x^{n-1}+tx^2f(x).$$
So
$$f(x)left(frac{1-tx^2}{x}right)=1+ssumlimits_{n=1}frac{b_{n}}{n}x^{n}.$$
Now we derivate
$$left[f(x)left(frac{1-tx^2}{x}right)right]'=frac{s}{x}sumlimits_{n=1}b_{n}x^{n}=frac{sf(x)}{x}.$$
So
$$f'(x)left(frac{1-tx^2}{x}right)-f(x)left(t+frac{1}{x^2}right)=frac{sf(x)}{x}.$$
Hence
$$frac{f'(x)}{f(x)}=frac{tx+s+frac{1}{x}}{1-tx^2}.$$
Solve the differential equation and we have
$$f(x)=frac{x}{1-tx^2} * (frac{1+xsqrt t}{1-xsqrt t})^{frac{s}{2sqrt t}}=
frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}.$$
$endgroup$
add a comment |
$begingroup$
Complete answer -rtybase's way-
$$f(x)=b_0+b_1x+sumlimits_{n=2}b_nx^n=
x+sumlimits_{n=2}left(sfrac{b_{n-1}}{n-1}+tb_{n-2}right)x^n=\
x+sxsumlimits_{n=2}frac{b_{n-1}}{n-1}x^{n-1}+tx^2f(x).$$
So
$$f(x)left(frac{1-tx^2}{x}right)=1+ssumlimits_{n=1}frac{b_{n}}{n}x^{n}.$$
Now we derivate
$$left[f(x)left(frac{1-tx^2}{x}right)right]'=frac{s}{x}sumlimits_{n=1}b_{n}x^{n}=frac{sf(x)}{x}.$$
So
$$f'(x)left(frac{1-tx^2}{x}right)-f(x)left(t+frac{1}{x^2}right)=frac{sf(x)}{x}.$$
Hence
$$frac{f'(x)}{f(x)}=frac{tx+s+frac{1}{x}}{1-tx^2}.$$
Solve the differential equation and we have
$$f(x)=frac{x}{1-tx^2} * (frac{1+xsqrt t}{1-xsqrt t})^{frac{s}{2sqrt t}}=
frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}.$$
$endgroup$
add a comment |
$begingroup$
Complete answer -rtybase's way-
$$f(x)=b_0+b_1x+sumlimits_{n=2}b_nx^n=
x+sumlimits_{n=2}left(sfrac{b_{n-1}}{n-1}+tb_{n-2}right)x^n=\
x+sxsumlimits_{n=2}frac{b_{n-1}}{n-1}x^{n-1}+tx^2f(x).$$
So
$$f(x)left(frac{1-tx^2}{x}right)=1+ssumlimits_{n=1}frac{b_{n}}{n}x^{n}.$$
Now we derivate
$$left[f(x)left(frac{1-tx^2}{x}right)right]'=frac{s}{x}sumlimits_{n=1}b_{n}x^{n}=frac{sf(x)}{x}.$$
So
$$f'(x)left(frac{1-tx^2}{x}right)-f(x)left(t+frac{1}{x^2}right)=frac{sf(x)}{x}.$$
Hence
$$frac{f'(x)}{f(x)}=frac{tx+s+frac{1}{x}}{1-tx^2}.$$
Solve the differential equation and we have
$$f(x)=frac{x}{1-tx^2} * (frac{1+xsqrt t}{1-xsqrt t})^{frac{s}{2sqrt t}}=
frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}.$$
$endgroup$
Complete answer -rtybase's way-
$$f(x)=b_0+b_1x+sumlimits_{n=2}b_nx^n=
x+sumlimits_{n=2}left(sfrac{b_{n-1}}{n-1}+tb_{n-2}right)x^n=\
x+sxsumlimits_{n=2}frac{b_{n-1}}{n-1}x^{n-1}+tx^2f(x).$$
So
$$f(x)left(frac{1-tx^2}{x}right)=1+ssumlimits_{n=1}frac{b_{n}}{n}x^{n}.$$
Now we derivate
$$left[f(x)left(frac{1-tx^2}{x}right)right]'=frac{s}{x}sumlimits_{n=1}b_{n}x^{n}=frac{sf(x)}{x}.$$
So
$$f'(x)left(frac{1-tx^2}{x}right)-f(x)left(t+frac{1}{x^2}right)=frac{sf(x)}{x}.$$
Hence
$$frac{f'(x)}{f(x)}=frac{tx+s+frac{1}{x}}{1-tx^2}.$$
Solve the differential equation and we have
$$f(x)=frac{x}{1-tx^2} * (frac{1+xsqrt t}{1-xsqrt t})^{frac{s}{2sqrt t}}=
frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}.$$
edited Dec 17 '18 at 12:34
answered Dec 17 '18 at 11:47
ManyamaManyama
5021415
5021415
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042490%2fabout-a-0-0-a-1-1-a-n-3-fraca-n-1n-1-2a-n-2-for-n-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown