Random vector and CDF
up vote
0
down vote
favorite
I have to compute CDF of random vector (X,Y) using the following probability density function
c x>=0, y>=0 and x+y<=2
f(x,y) = 0 otherwise
The solution has several cases (x>=0,y>=0, x+y<=2) (x>=2,0<=y<2), (y>=2,0<=x<2), (0<=x<2, 0<=y<2,x+y>=2). Why I should be interested to find these cases?
Could someone help me to understand this exercise?
thank you in advance.
probability-distributions random-variables
add a comment |
up vote
0
down vote
favorite
I have to compute CDF of random vector (X,Y) using the following probability density function
c x>=0, y>=0 and x+y<=2
f(x,y) = 0 otherwise
The solution has several cases (x>=0,y>=0, x+y<=2) (x>=2,0<=y<2), (y>=2,0<=x<2), (0<=x<2, 0<=y<2,x+y>=2). Why I should be interested to find these cases?
Could someone help me to understand this exercise?
thank you in advance.
probability-distributions random-variables
The joint CDF is the probability $F(x,y)=P(Xle x,Yle y)=int_{-infty}^yint_{-infty}^x f(u,v),du,dv$ for all $(x,y)$. We should consider the different cases you mention because we need them to specify the CDF completely. It is only natural that $F(x,y)$ turns out to be a piecewise function, completely defined for all possible values that $x$ and $y$ can take. Note that $F:mathbb R^2to mathbb R$.
– StubbornAtom
Nov 19 at 19:52
For example if I want to compute F(x,y) for this case (0<=x<2, 0<=y<2,x+y>=2), what are the endpoints of the integrals?
– Francisco
Nov 19 at 19:56
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have to compute CDF of random vector (X,Y) using the following probability density function
c x>=0, y>=0 and x+y<=2
f(x,y) = 0 otherwise
The solution has several cases (x>=0,y>=0, x+y<=2) (x>=2,0<=y<2), (y>=2,0<=x<2), (0<=x<2, 0<=y<2,x+y>=2). Why I should be interested to find these cases?
Could someone help me to understand this exercise?
thank you in advance.
probability-distributions random-variables
I have to compute CDF of random vector (X,Y) using the following probability density function
c x>=0, y>=0 and x+y<=2
f(x,y) = 0 otherwise
The solution has several cases (x>=0,y>=0, x+y<=2) (x>=2,0<=y<2), (y>=2,0<=x<2), (0<=x<2, 0<=y<2,x+y>=2). Why I should be interested to find these cases?
Could someone help me to understand this exercise?
thank you in advance.
probability-distributions random-variables
probability-distributions random-variables
asked Nov 19 at 19:33
Francisco
82
82
The joint CDF is the probability $F(x,y)=P(Xle x,Yle y)=int_{-infty}^yint_{-infty}^x f(u,v),du,dv$ for all $(x,y)$. We should consider the different cases you mention because we need them to specify the CDF completely. It is only natural that $F(x,y)$ turns out to be a piecewise function, completely defined for all possible values that $x$ and $y$ can take. Note that $F:mathbb R^2to mathbb R$.
– StubbornAtom
Nov 19 at 19:52
For example if I want to compute F(x,y) for this case (0<=x<2, 0<=y<2,x+y>=2), what are the endpoints of the integrals?
– Francisco
Nov 19 at 19:56
add a comment |
The joint CDF is the probability $F(x,y)=P(Xle x,Yle y)=int_{-infty}^yint_{-infty}^x f(u,v),du,dv$ for all $(x,y)$. We should consider the different cases you mention because we need them to specify the CDF completely. It is only natural that $F(x,y)$ turns out to be a piecewise function, completely defined for all possible values that $x$ and $y$ can take. Note that $F:mathbb R^2to mathbb R$.
– StubbornAtom
Nov 19 at 19:52
For example if I want to compute F(x,y) for this case (0<=x<2, 0<=y<2,x+y>=2), what are the endpoints of the integrals?
– Francisco
Nov 19 at 19:56
The joint CDF is the probability $F(x,y)=P(Xle x,Yle y)=int_{-infty}^yint_{-infty}^x f(u,v),du,dv$ for all $(x,y)$. We should consider the different cases you mention because we need them to specify the CDF completely. It is only natural that $F(x,y)$ turns out to be a piecewise function, completely defined for all possible values that $x$ and $y$ can take. Note that $F:mathbb R^2to mathbb R$.
– StubbornAtom
Nov 19 at 19:52
The joint CDF is the probability $F(x,y)=P(Xle x,Yle y)=int_{-infty}^yint_{-infty}^x f(u,v),du,dv$ for all $(x,y)$. We should consider the different cases you mention because we need them to specify the CDF completely. It is only natural that $F(x,y)$ turns out to be a piecewise function, completely defined for all possible values that $x$ and $y$ can take. Note that $F:mathbb R^2to mathbb R$.
– StubbornAtom
Nov 19 at 19:52
For example if I want to compute F(x,y) for this case (0<=x<2, 0<=y<2,x+y>=2), what are the endpoints of the integrals?
– Francisco
Nov 19 at 19:56
For example if I want to compute F(x,y) for this case (0<=x<2, 0<=y<2,x+y>=2), what are the endpoints of the integrals?
– Francisco
Nov 19 at 19:56
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005402%2frandom-vector-and-cdf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005402%2frandom-vector-and-cdf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
The joint CDF is the probability $F(x,y)=P(Xle x,Yle y)=int_{-infty}^yint_{-infty}^x f(u,v),du,dv$ for all $(x,y)$. We should consider the different cases you mention because we need them to specify the CDF completely. It is only natural that $F(x,y)$ turns out to be a piecewise function, completely defined for all possible values that $x$ and $y$ can take. Note that $F:mathbb R^2to mathbb R$.
– StubbornAtom
Nov 19 at 19:52
For example if I want to compute F(x,y) for this case (0<=x<2, 0<=y<2,x+y>=2), what are the endpoints of the integrals?
– Francisco
Nov 19 at 19:56