The Convergence of block Gauss-Seidel method
up vote
1
down vote
favorite
The task:
To solve a system of equations with a nonsingular block matrix:
$$begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}f\gend{bmatrix}$$
where $A,Binmathbb{R}^{Ntimes N}$ and $A=A^{operatorname{T}}>0$ we use the following block Gauss-Seidel method:
$$Ax_{n+1}+By_n=f,\B^{operatorname{T}}x_{n+1}-y_{n+1}=g$$
Prove that if $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2<1$, then the iteration converges to the solution of the system of equations for any initial $x_0,y_0$.
Solution attempt:
In the general case: An iterative method $Mmathcal{X}_{n+1}=mathcal{B}+Zmathcal{X}_n$, solving a system of equations $mathcal{A}mathcal{X}=mathcal{B}$, where $mathcal{A}=M-Z$, converges for any $mathcal{X_0}$ if $left|left|mathfrak{B}right|right|<1$, for $mathfrak{B}:=mathrm{I}-M^{-1}mathcal{A}$.
Here we have $mathcal{A}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix},mathcal{X}=begin{bmatrix}x\yend{bmatrix},mathcal{B}=begin{bmatrix}f\gend{bmatrix}$. Sorry for using fonts to distinguish tokens, but as you can see we have crazy conflicts here! Firstly let's try to find $M$:
$$begin{cases}Ax_{n+1}+By_n=f\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}iffbegin{cases}Ax_{n+1}=f-By_n\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}$$
In matrix form:
$$begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x_{n+1}\y_{n+1}end{bmatrix}=begin{bmatrix}f\gend{bmatrix}+begin{bmatrix}0&-B\0&0end{bmatrix}begin{bmatrix}x_n\y_nend{bmatrix}$$
Since clearly $begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}-begin{bmatrix}0&-B\0&0end{bmatrix}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=A$,
we can conclude that $begin{cases}M=begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}\Z=begin{bmatrix}0&-B\0&0end{bmatrix}end{cases}$.
Now let's try to find $M^{-1}$. We have $M^{-1}M=operatorname{I}$, so:
$$begin{bmatrix}M^{-1}_{1,1}&M^{-1}_{1,2}\M^{-1}_{2,1}&M^{-1}_{2,2}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
Filling in the blanks we easily get:
$$begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
So $M^{-1}=begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}$.
Now let's compute $mathfrak{B}$:
$$mathfrak{B}=mathrm{I}-M^{-1}mathcal{A}=mathrm{I}-begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}-begin{bmatrix}mathrm{I}&A^{-1}B\0&mathrm{I}+B^{operatorname{T}}A^{-1}Bend{bmatrix}=begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}$$
Now don't really know what to do next. It would seem I have to somehow show that $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2geqleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2$, but I don't know how to do this.
I'm not sure if this is correct, but I think I remember that for any matrix $mathfrak{A}$, either all $p$-norms are $<1$, $=1$ or $>1$. If this holds, then we could perhpas do something like this: $$left|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2<1iffleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_infty<1iffmaxleft(left|left|0right|right|_infty+left|left|A^{-1}Bright|right|_{infty},left|left|0right|right|_infty+left|left|B^{operatorname{T}}A^{-1}Bright|right|_{infty}right)<1iff\maxleft(left|left|A^{-1}Bright|right|,left|left|B^{operatorname{T}}A^{-1}Bright|right|right)<1$$
So if this reasoning is correct (I wouldn't bet a penny on that), the task would boil down to proving that $left|left|A^{-1}Bright|right|leqleft|left|B^{operatorname{T}}A^{-1}Bright|right|$, but I don't know how to prove it nor if it even holds.
And I haven't yet used the fact that $A$ is positive definite!
How to proceed?
linear-algebra matrices convergence numerical-methods
add a comment |
up vote
1
down vote
favorite
The task:
To solve a system of equations with a nonsingular block matrix:
$$begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}f\gend{bmatrix}$$
where $A,Binmathbb{R}^{Ntimes N}$ and $A=A^{operatorname{T}}>0$ we use the following block Gauss-Seidel method:
$$Ax_{n+1}+By_n=f,\B^{operatorname{T}}x_{n+1}-y_{n+1}=g$$
Prove that if $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2<1$, then the iteration converges to the solution of the system of equations for any initial $x_0,y_0$.
Solution attempt:
In the general case: An iterative method $Mmathcal{X}_{n+1}=mathcal{B}+Zmathcal{X}_n$, solving a system of equations $mathcal{A}mathcal{X}=mathcal{B}$, where $mathcal{A}=M-Z$, converges for any $mathcal{X_0}$ if $left|left|mathfrak{B}right|right|<1$, for $mathfrak{B}:=mathrm{I}-M^{-1}mathcal{A}$.
Here we have $mathcal{A}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix},mathcal{X}=begin{bmatrix}x\yend{bmatrix},mathcal{B}=begin{bmatrix}f\gend{bmatrix}$. Sorry for using fonts to distinguish tokens, but as you can see we have crazy conflicts here! Firstly let's try to find $M$:
$$begin{cases}Ax_{n+1}+By_n=f\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}iffbegin{cases}Ax_{n+1}=f-By_n\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}$$
In matrix form:
$$begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x_{n+1}\y_{n+1}end{bmatrix}=begin{bmatrix}f\gend{bmatrix}+begin{bmatrix}0&-B\0&0end{bmatrix}begin{bmatrix}x_n\y_nend{bmatrix}$$
Since clearly $begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}-begin{bmatrix}0&-B\0&0end{bmatrix}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=A$,
we can conclude that $begin{cases}M=begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}\Z=begin{bmatrix}0&-B\0&0end{bmatrix}end{cases}$.
Now let's try to find $M^{-1}$. We have $M^{-1}M=operatorname{I}$, so:
$$begin{bmatrix}M^{-1}_{1,1}&M^{-1}_{1,2}\M^{-1}_{2,1}&M^{-1}_{2,2}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
Filling in the blanks we easily get:
$$begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
So $M^{-1}=begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}$.
Now let's compute $mathfrak{B}$:
$$mathfrak{B}=mathrm{I}-M^{-1}mathcal{A}=mathrm{I}-begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}-begin{bmatrix}mathrm{I}&A^{-1}B\0&mathrm{I}+B^{operatorname{T}}A^{-1}Bend{bmatrix}=begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}$$
Now don't really know what to do next. It would seem I have to somehow show that $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2geqleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2$, but I don't know how to do this.
I'm not sure if this is correct, but I think I remember that for any matrix $mathfrak{A}$, either all $p$-norms are $<1$, $=1$ or $>1$. If this holds, then we could perhpas do something like this: $$left|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2<1iffleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_infty<1iffmaxleft(left|left|0right|right|_infty+left|left|A^{-1}Bright|right|_{infty},left|left|0right|right|_infty+left|left|B^{operatorname{T}}A^{-1}Bright|right|_{infty}right)<1iff\maxleft(left|left|A^{-1}Bright|right|,left|left|B^{operatorname{T}}A^{-1}Bright|right|right)<1$$
So if this reasoning is correct (I wouldn't bet a penny on that), the task would boil down to proving that $left|left|A^{-1}Bright|right|leqleft|left|B^{operatorname{T}}A^{-1}Bright|right|$, but I don't know how to prove it nor if it even holds.
And I haven't yet used the fact that $A$ is positive definite!
How to proceed?
linear-algebra matrices convergence numerical-methods
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
The task:
To solve a system of equations with a nonsingular block matrix:
$$begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}f\gend{bmatrix}$$
where $A,Binmathbb{R}^{Ntimes N}$ and $A=A^{operatorname{T}}>0$ we use the following block Gauss-Seidel method:
$$Ax_{n+1}+By_n=f,\B^{operatorname{T}}x_{n+1}-y_{n+1}=g$$
Prove that if $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2<1$, then the iteration converges to the solution of the system of equations for any initial $x_0,y_0$.
Solution attempt:
In the general case: An iterative method $Mmathcal{X}_{n+1}=mathcal{B}+Zmathcal{X}_n$, solving a system of equations $mathcal{A}mathcal{X}=mathcal{B}$, where $mathcal{A}=M-Z$, converges for any $mathcal{X_0}$ if $left|left|mathfrak{B}right|right|<1$, for $mathfrak{B}:=mathrm{I}-M^{-1}mathcal{A}$.
Here we have $mathcal{A}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix},mathcal{X}=begin{bmatrix}x\yend{bmatrix},mathcal{B}=begin{bmatrix}f\gend{bmatrix}$. Sorry for using fonts to distinguish tokens, but as you can see we have crazy conflicts here! Firstly let's try to find $M$:
$$begin{cases}Ax_{n+1}+By_n=f\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}iffbegin{cases}Ax_{n+1}=f-By_n\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}$$
In matrix form:
$$begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x_{n+1}\y_{n+1}end{bmatrix}=begin{bmatrix}f\gend{bmatrix}+begin{bmatrix}0&-B\0&0end{bmatrix}begin{bmatrix}x_n\y_nend{bmatrix}$$
Since clearly $begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}-begin{bmatrix}0&-B\0&0end{bmatrix}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=A$,
we can conclude that $begin{cases}M=begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}\Z=begin{bmatrix}0&-B\0&0end{bmatrix}end{cases}$.
Now let's try to find $M^{-1}$. We have $M^{-1}M=operatorname{I}$, so:
$$begin{bmatrix}M^{-1}_{1,1}&M^{-1}_{1,2}\M^{-1}_{2,1}&M^{-1}_{2,2}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
Filling in the blanks we easily get:
$$begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
So $M^{-1}=begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}$.
Now let's compute $mathfrak{B}$:
$$mathfrak{B}=mathrm{I}-M^{-1}mathcal{A}=mathrm{I}-begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}-begin{bmatrix}mathrm{I}&A^{-1}B\0&mathrm{I}+B^{operatorname{T}}A^{-1}Bend{bmatrix}=begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}$$
Now don't really know what to do next. It would seem I have to somehow show that $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2geqleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2$, but I don't know how to do this.
I'm not sure if this is correct, but I think I remember that for any matrix $mathfrak{A}$, either all $p$-norms are $<1$, $=1$ or $>1$. If this holds, then we could perhpas do something like this: $$left|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2<1iffleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_infty<1iffmaxleft(left|left|0right|right|_infty+left|left|A^{-1}Bright|right|_{infty},left|left|0right|right|_infty+left|left|B^{operatorname{T}}A^{-1}Bright|right|_{infty}right)<1iff\maxleft(left|left|A^{-1}Bright|right|,left|left|B^{operatorname{T}}A^{-1}Bright|right|right)<1$$
So if this reasoning is correct (I wouldn't bet a penny on that), the task would boil down to proving that $left|left|A^{-1}Bright|right|leqleft|left|B^{operatorname{T}}A^{-1}Bright|right|$, but I don't know how to prove it nor if it even holds.
And I haven't yet used the fact that $A$ is positive definite!
How to proceed?
linear-algebra matrices convergence numerical-methods
The task:
To solve a system of equations with a nonsingular block matrix:
$$begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}f\gend{bmatrix}$$
where $A,Binmathbb{R}^{Ntimes N}$ and $A=A^{operatorname{T}}>0$ we use the following block Gauss-Seidel method:
$$Ax_{n+1}+By_n=f,\B^{operatorname{T}}x_{n+1}-y_{n+1}=g$$
Prove that if $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2<1$, then the iteration converges to the solution of the system of equations for any initial $x_0,y_0$.
Solution attempt:
In the general case: An iterative method $Mmathcal{X}_{n+1}=mathcal{B}+Zmathcal{X}_n$, solving a system of equations $mathcal{A}mathcal{X}=mathcal{B}$, where $mathcal{A}=M-Z$, converges for any $mathcal{X_0}$ if $left|left|mathfrak{B}right|right|<1$, for $mathfrak{B}:=mathrm{I}-M^{-1}mathcal{A}$.
Here we have $mathcal{A}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix},mathcal{X}=begin{bmatrix}x\yend{bmatrix},mathcal{B}=begin{bmatrix}f\gend{bmatrix}$. Sorry for using fonts to distinguish tokens, but as you can see we have crazy conflicts here! Firstly let's try to find $M$:
$$begin{cases}Ax_{n+1}+By_n=f\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}iffbegin{cases}Ax_{n+1}=f-By_n\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}$$
In matrix form:
$$begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x_{n+1}\y_{n+1}end{bmatrix}=begin{bmatrix}f\gend{bmatrix}+begin{bmatrix}0&-B\0&0end{bmatrix}begin{bmatrix}x_n\y_nend{bmatrix}$$
Since clearly $begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}-begin{bmatrix}0&-B\0&0end{bmatrix}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=A$,
we can conclude that $begin{cases}M=begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}\Z=begin{bmatrix}0&-B\0&0end{bmatrix}end{cases}$.
Now let's try to find $M^{-1}$. We have $M^{-1}M=operatorname{I}$, so:
$$begin{bmatrix}M^{-1}_{1,1}&M^{-1}_{1,2}\M^{-1}_{2,1}&M^{-1}_{2,2}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
Filling in the blanks we easily get:
$$begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
So $M^{-1}=begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}$.
Now let's compute $mathfrak{B}$:
$$mathfrak{B}=mathrm{I}-M^{-1}mathcal{A}=mathrm{I}-begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}-begin{bmatrix}mathrm{I}&A^{-1}B\0&mathrm{I}+B^{operatorname{T}}A^{-1}Bend{bmatrix}=begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}$$
Now don't really know what to do next. It would seem I have to somehow show that $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2geqleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2$, but I don't know how to do this.
I'm not sure if this is correct, but I think I remember that for any matrix $mathfrak{A}$, either all $p$-norms are $<1$, $=1$ or $>1$. If this holds, then we could perhpas do something like this: $$left|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2<1iffleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_infty<1iffmaxleft(left|left|0right|right|_infty+left|left|A^{-1}Bright|right|_{infty},left|left|0right|right|_infty+left|left|B^{operatorname{T}}A^{-1}Bright|right|_{infty}right)<1iff\maxleft(left|left|A^{-1}Bright|right|,left|left|B^{operatorname{T}}A^{-1}Bright|right|right)<1$$
So if this reasoning is correct (I wouldn't bet a penny on that), the task would boil down to proving that $left|left|A^{-1}Bright|right|leqleft|left|B^{operatorname{T}}A^{-1}Bright|right|$, but I don't know how to prove it nor if it even holds.
And I haven't yet used the fact that $A$ is positive definite!
How to proceed?
linear-algebra matrices convergence numerical-methods
linear-algebra matrices convergence numerical-methods
edited Nov 18 at 19:23
asked Nov 18 at 14:58
gaazkam
437314
437314
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003635%2fthe-convergence-of-block-gauss-seidel-method%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown