The Convergence of block Gauss-Seidel method











up vote
1
down vote

favorite












The task:




To solve a system of equations with a nonsingular block matrix:
$$begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}f\gend{bmatrix}$$
where $A,Binmathbb{R}^{Ntimes N}$ and $A=A^{operatorname{T}}>0$ we use the following block Gauss-Seidel method:
$$Ax_{n+1}+By_n=f,\B^{operatorname{T}}x_{n+1}-y_{n+1}=g$$
Prove that if $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2<1$, then the iteration converges to the solution of the system of equations for any initial $x_0,y_0$.




Solution attempt:



In the general case: An iterative method $Mmathcal{X}_{n+1}=mathcal{B}+Zmathcal{X}_n$, solving a system of equations $mathcal{A}mathcal{X}=mathcal{B}$, where $mathcal{A}=M-Z$, converges for any $mathcal{X_0}$ if $left|left|mathfrak{B}right|right|<1$, for $mathfrak{B}:=mathrm{I}-M^{-1}mathcal{A}$.



Here we have $mathcal{A}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix},mathcal{X}=begin{bmatrix}x\yend{bmatrix},mathcal{B}=begin{bmatrix}f\gend{bmatrix}$. Sorry for using fonts to distinguish tokens, but as you can see we have crazy conflicts here! Firstly let's try to find $M$:



$$begin{cases}Ax_{n+1}+By_n=f\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}iffbegin{cases}Ax_{n+1}=f-By_n\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}$$
In matrix form:
$$begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x_{n+1}\y_{n+1}end{bmatrix}=begin{bmatrix}f\gend{bmatrix}+begin{bmatrix}0&-B\0&0end{bmatrix}begin{bmatrix}x_n\y_nend{bmatrix}$$



Since clearly $begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}-begin{bmatrix}0&-B\0&0end{bmatrix}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=A$,



we can conclude that $begin{cases}M=begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}\Z=begin{bmatrix}0&-B\0&0end{bmatrix}end{cases}$.



Now let's try to find $M^{-1}$. We have $M^{-1}M=operatorname{I}$, so:
$$begin{bmatrix}M^{-1}_{1,1}&M^{-1}_{1,2}\M^{-1}_{2,1}&M^{-1}_{2,2}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$



Filling in the blanks we easily get:
$$begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
So $M^{-1}=begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}$.



Now let's compute $mathfrak{B}$:



$$mathfrak{B}=mathrm{I}-M^{-1}mathcal{A}=mathrm{I}-begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}-begin{bmatrix}mathrm{I}&A^{-1}B\0&mathrm{I}+B^{operatorname{T}}A^{-1}Bend{bmatrix}=begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}$$



Now don't really know what to do next. It would seem I have to somehow show that $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2geqleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2$, but I don't know how to do this.



I'm not sure if this is correct, but I think I remember that for any matrix $mathfrak{A}$, either all $p$-norms are $<1$, $=1$ or $>1$. If this holds, then we could perhpas do something like this: $$left|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2<1iffleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_infty<1iffmaxleft(left|left|0right|right|_infty+left|left|A^{-1}Bright|right|_{infty},left|left|0right|right|_infty+left|left|B^{operatorname{T}}A^{-1}Bright|right|_{infty}right)<1iff\maxleft(left|left|A^{-1}Bright|right|,left|left|B^{operatorname{T}}A^{-1}Bright|right|right)<1$$



So if this reasoning is correct (I wouldn't bet a penny on that), the task would boil down to proving that $left|left|A^{-1}Bright|right|leqleft|left|B^{operatorname{T}}A^{-1}Bright|right|$, but I don't know how to prove it nor if it even holds.



And I haven't yet used the fact that $A$ is positive definite!



How to proceed?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    The task:




    To solve a system of equations with a nonsingular block matrix:
    $$begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}f\gend{bmatrix}$$
    where $A,Binmathbb{R}^{Ntimes N}$ and $A=A^{operatorname{T}}>0$ we use the following block Gauss-Seidel method:
    $$Ax_{n+1}+By_n=f,\B^{operatorname{T}}x_{n+1}-y_{n+1}=g$$
    Prove that if $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2<1$, then the iteration converges to the solution of the system of equations for any initial $x_0,y_0$.




    Solution attempt:



    In the general case: An iterative method $Mmathcal{X}_{n+1}=mathcal{B}+Zmathcal{X}_n$, solving a system of equations $mathcal{A}mathcal{X}=mathcal{B}$, where $mathcal{A}=M-Z$, converges for any $mathcal{X_0}$ if $left|left|mathfrak{B}right|right|<1$, for $mathfrak{B}:=mathrm{I}-M^{-1}mathcal{A}$.



    Here we have $mathcal{A}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix},mathcal{X}=begin{bmatrix}x\yend{bmatrix},mathcal{B}=begin{bmatrix}f\gend{bmatrix}$. Sorry for using fonts to distinguish tokens, but as you can see we have crazy conflicts here! Firstly let's try to find $M$:



    $$begin{cases}Ax_{n+1}+By_n=f\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}iffbegin{cases}Ax_{n+1}=f-By_n\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}$$
    In matrix form:
    $$begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x_{n+1}\y_{n+1}end{bmatrix}=begin{bmatrix}f\gend{bmatrix}+begin{bmatrix}0&-B\0&0end{bmatrix}begin{bmatrix}x_n\y_nend{bmatrix}$$



    Since clearly $begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}-begin{bmatrix}0&-B\0&0end{bmatrix}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=A$,



    we can conclude that $begin{cases}M=begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}\Z=begin{bmatrix}0&-B\0&0end{bmatrix}end{cases}$.



    Now let's try to find $M^{-1}$. We have $M^{-1}M=operatorname{I}$, so:
    $$begin{bmatrix}M^{-1}_{1,1}&M^{-1}_{1,2}\M^{-1}_{2,1}&M^{-1}_{2,2}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$



    Filling in the blanks we easily get:
    $$begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
    So $M^{-1}=begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}$.



    Now let's compute $mathfrak{B}$:



    $$mathfrak{B}=mathrm{I}-M^{-1}mathcal{A}=mathrm{I}-begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}-begin{bmatrix}mathrm{I}&A^{-1}B\0&mathrm{I}+B^{operatorname{T}}A^{-1}Bend{bmatrix}=begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}$$



    Now don't really know what to do next. It would seem I have to somehow show that $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2geqleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2$, but I don't know how to do this.



    I'm not sure if this is correct, but I think I remember that for any matrix $mathfrak{A}$, either all $p$-norms are $<1$, $=1$ or $>1$. If this holds, then we could perhpas do something like this: $$left|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2<1iffleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_infty<1iffmaxleft(left|left|0right|right|_infty+left|left|A^{-1}Bright|right|_{infty},left|left|0right|right|_infty+left|left|B^{operatorname{T}}A^{-1}Bright|right|_{infty}right)<1iff\maxleft(left|left|A^{-1}Bright|right|,left|left|B^{operatorname{T}}A^{-1}Bright|right|right)<1$$



    So if this reasoning is correct (I wouldn't bet a penny on that), the task would boil down to proving that $left|left|A^{-1}Bright|right|leqleft|left|B^{operatorname{T}}A^{-1}Bright|right|$, but I don't know how to prove it nor if it even holds.



    And I haven't yet used the fact that $A$ is positive definite!



    How to proceed?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      The task:




      To solve a system of equations with a nonsingular block matrix:
      $$begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}f\gend{bmatrix}$$
      where $A,Binmathbb{R}^{Ntimes N}$ and $A=A^{operatorname{T}}>0$ we use the following block Gauss-Seidel method:
      $$Ax_{n+1}+By_n=f,\B^{operatorname{T}}x_{n+1}-y_{n+1}=g$$
      Prove that if $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2<1$, then the iteration converges to the solution of the system of equations for any initial $x_0,y_0$.




      Solution attempt:



      In the general case: An iterative method $Mmathcal{X}_{n+1}=mathcal{B}+Zmathcal{X}_n$, solving a system of equations $mathcal{A}mathcal{X}=mathcal{B}$, where $mathcal{A}=M-Z$, converges for any $mathcal{X_0}$ if $left|left|mathfrak{B}right|right|<1$, for $mathfrak{B}:=mathrm{I}-M^{-1}mathcal{A}$.



      Here we have $mathcal{A}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix},mathcal{X}=begin{bmatrix}x\yend{bmatrix},mathcal{B}=begin{bmatrix}f\gend{bmatrix}$. Sorry for using fonts to distinguish tokens, but as you can see we have crazy conflicts here! Firstly let's try to find $M$:



      $$begin{cases}Ax_{n+1}+By_n=f\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}iffbegin{cases}Ax_{n+1}=f-By_n\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}$$
      In matrix form:
      $$begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x_{n+1}\y_{n+1}end{bmatrix}=begin{bmatrix}f\gend{bmatrix}+begin{bmatrix}0&-B\0&0end{bmatrix}begin{bmatrix}x_n\y_nend{bmatrix}$$



      Since clearly $begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}-begin{bmatrix}0&-B\0&0end{bmatrix}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=A$,



      we can conclude that $begin{cases}M=begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}\Z=begin{bmatrix}0&-B\0&0end{bmatrix}end{cases}$.



      Now let's try to find $M^{-1}$. We have $M^{-1}M=operatorname{I}$, so:
      $$begin{bmatrix}M^{-1}_{1,1}&M^{-1}_{1,2}\M^{-1}_{2,1}&M^{-1}_{2,2}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$



      Filling in the blanks we easily get:
      $$begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
      So $M^{-1}=begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}$.



      Now let's compute $mathfrak{B}$:



      $$mathfrak{B}=mathrm{I}-M^{-1}mathcal{A}=mathrm{I}-begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}-begin{bmatrix}mathrm{I}&A^{-1}B\0&mathrm{I}+B^{operatorname{T}}A^{-1}Bend{bmatrix}=begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}$$



      Now don't really know what to do next. It would seem I have to somehow show that $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2geqleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2$, but I don't know how to do this.



      I'm not sure if this is correct, but I think I remember that for any matrix $mathfrak{A}$, either all $p$-norms are $<1$, $=1$ or $>1$. If this holds, then we could perhpas do something like this: $$left|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2<1iffleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_infty<1iffmaxleft(left|left|0right|right|_infty+left|left|A^{-1}Bright|right|_{infty},left|left|0right|right|_infty+left|left|B^{operatorname{T}}A^{-1}Bright|right|_{infty}right)<1iff\maxleft(left|left|A^{-1}Bright|right|,left|left|B^{operatorname{T}}A^{-1}Bright|right|right)<1$$



      So if this reasoning is correct (I wouldn't bet a penny on that), the task would boil down to proving that $left|left|A^{-1}Bright|right|leqleft|left|B^{operatorname{T}}A^{-1}Bright|right|$, but I don't know how to prove it nor if it even holds.



      And I haven't yet used the fact that $A$ is positive definite!



      How to proceed?










      share|cite|improve this question















      The task:




      To solve a system of equations with a nonsingular block matrix:
      $$begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}f\gend{bmatrix}$$
      where $A,Binmathbb{R}^{Ntimes N}$ and $A=A^{operatorname{T}}>0$ we use the following block Gauss-Seidel method:
      $$Ax_{n+1}+By_n=f,\B^{operatorname{T}}x_{n+1}-y_{n+1}=g$$
      Prove that if $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2<1$, then the iteration converges to the solution of the system of equations for any initial $x_0,y_0$.




      Solution attempt:



      In the general case: An iterative method $Mmathcal{X}_{n+1}=mathcal{B}+Zmathcal{X}_n$, solving a system of equations $mathcal{A}mathcal{X}=mathcal{B}$, where $mathcal{A}=M-Z$, converges for any $mathcal{X_0}$ if $left|left|mathfrak{B}right|right|<1$, for $mathfrak{B}:=mathrm{I}-M^{-1}mathcal{A}$.



      Here we have $mathcal{A}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix},mathcal{X}=begin{bmatrix}x\yend{bmatrix},mathcal{B}=begin{bmatrix}f\gend{bmatrix}$. Sorry for using fonts to distinguish tokens, but as you can see we have crazy conflicts here! Firstly let's try to find $M$:



      $$begin{cases}Ax_{n+1}+By_n=f\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}iffbegin{cases}Ax_{n+1}=f-By_n\B^{operatorname{T}}x_{n+1}-y_{n+1}=gend{cases}$$
      In matrix form:
      $$begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}begin{bmatrix}x_{n+1}\y_{n+1}end{bmatrix}=begin{bmatrix}f\gend{bmatrix}+begin{bmatrix}0&-B\0&0end{bmatrix}begin{bmatrix}x_n\y_nend{bmatrix}$$



      Since clearly $begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}-begin{bmatrix}0&-B\0&0end{bmatrix}=begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=A$,



      we can conclude that $begin{cases}M=begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}\Z=begin{bmatrix}0&-B\0&0end{bmatrix}end{cases}$.



      Now let's try to find $M^{-1}$. We have $M^{-1}M=operatorname{I}$, so:
      $$begin{bmatrix}M^{-1}_{1,1}&M^{-1}_{1,2}\M^{-1}_{2,1}&M^{-1}_{2,2}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$



      Filling in the blanks we easily get:
      $$begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&0\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}$$
      So $M^{-1}=begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}$.



      Now let's compute $mathfrak{B}$:



      $$mathfrak{B}=mathrm{I}-M^{-1}mathcal{A}=mathrm{I}-begin{bmatrix}A^{-1}&0\B^{operatorname{T}}A^{-1}&-mathrm{I}end{bmatrix}begin{bmatrix}A&B\B^{operatorname{T}}&-mathrm{I}end{bmatrix}=begin{bmatrix}mathrm{I}&0\0&mathrm{I}end{bmatrix}-begin{bmatrix}mathrm{I}&A^{-1}B\0&mathrm{I}+B^{operatorname{T}}A^{-1}Bend{bmatrix}=begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}$$



      Now don't really know what to do next. It would seem I have to somehow show that $left|left|B^{operatorname{T}}A^{-1}Bright|right|_2geqleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2$, but I don't know how to do this.



      I'm not sure if this is correct, but I think I remember that for any matrix $mathfrak{A}$, either all $p$-norms are $<1$, $=1$ or $>1$. If this holds, then we could perhpas do something like this: $$left|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_2<1iffleft|left|begin{bmatrix}0&-A^{-1}B\0&-B^{operatorname{T}}A^{-1}Bend{bmatrix}right|right|_infty<1iffmaxleft(left|left|0right|right|_infty+left|left|A^{-1}Bright|right|_{infty},left|left|0right|right|_infty+left|left|B^{operatorname{T}}A^{-1}Bright|right|_{infty}right)<1iff\maxleft(left|left|A^{-1}Bright|right|,left|left|B^{operatorname{T}}A^{-1}Bright|right|right)<1$$



      So if this reasoning is correct (I wouldn't bet a penny on that), the task would boil down to proving that $left|left|A^{-1}Bright|right|leqleft|left|B^{operatorname{T}}A^{-1}Bright|right|$, but I don't know how to prove it nor if it even holds.



      And I haven't yet used the fact that $A$ is positive definite!



      How to proceed?







      linear-algebra matrices convergence numerical-methods






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 18 at 19:23

























      asked Nov 18 at 14:58









      gaazkam

      437314




      437314



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003635%2fthe-convergence-of-block-gauss-seidel-method%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003635%2fthe-convergence-of-block-gauss-seidel-method%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa