Find the residue of $frac{zeta'(1+s)}{zeta(1+s)}frac{x^s}{s}$ at $s=0$












1












$begingroup$


Let, $displaystyle f(s)=frac{zeta'(1+s)}{zeta(1+s)}frac{x^s}{s}$. Prove that $Res(f,s=0)=A-log x$ , for some constant $A$.



At $s=0$ , $zeta(s)$ has a pole of order $1$ and $zeta'(s)$ has a pole of order $2$. So, $frac{zeta'(1+s)}{zeta(1+s)}$ has a simple pole at $s=0$. Again , $x^s/s$ has a simple pole at $s=0$. So $f$ has a pole of order $2$ at $s=0$. So the residue is given by



$$lim_{sto 0}frac{d}{ds}left{sx^s.frac{zeta'(1+s)}{zeta(1+s)}right}.$$



I've stuck here ! How can I calculate this to prove the result ?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Hint: The answer should be that A is Euler–Mascheroni constant here.
    $endgroup$
    – Nanayajitzuki
    Dec 9 '18 at 8:06










  • $begingroup$
    $frac{x^s}{s} = frac{1}{s}+log x+O(s)$, do the same with $zeta'/zeta(1+s)$ and pick the coef of $1/s$ (which appears when integrating $int_{|s|=epsilon}$)
    $endgroup$
    – reuns
    Dec 9 '18 at 8:09


















1












$begingroup$


Let, $displaystyle f(s)=frac{zeta'(1+s)}{zeta(1+s)}frac{x^s}{s}$. Prove that $Res(f,s=0)=A-log x$ , for some constant $A$.



At $s=0$ , $zeta(s)$ has a pole of order $1$ and $zeta'(s)$ has a pole of order $2$. So, $frac{zeta'(1+s)}{zeta(1+s)}$ has a simple pole at $s=0$. Again , $x^s/s$ has a simple pole at $s=0$. So $f$ has a pole of order $2$ at $s=0$. So the residue is given by



$$lim_{sto 0}frac{d}{ds}left{sx^s.frac{zeta'(1+s)}{zeta(1+s)}right}.$$



I've stuck here ! How can I calculate this to prove the result ?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Hint: The answer should be that A is Euler–Mascheroni constant here.
    $endgroup$
    – Nanayajitzuki
    Dec 9 '18 at 8:06










  • $begingroup$
    $frac{x^s}{s} = frac{1}{s}+log x+O(s)$, do the same with $zeta'/zeta(1+s)$ and pick the coef of $1/s$ (which appears when integrating $int_{|s|=epsilon}$)
    $endgroup$
    – reuns
    Dec 9 '18 at 8:09
















1












1








1





$begingroup$


Let, $displaystyle f(s)=frac{zeta'(1+s)}{zeta(1+s)}frac{x^s}{s}$. Prove that $Res(f,s=0)=A-log x$ , for some constant $A$.



At $s=0$ , $zeta(s)$ has a pole of order $1$ and $zeta'(s)$ has a pole of order $2$. So, $frac{zeta'(1+s)}{zeta(1+s)}$ has a simple pole at $s=0$. Again , $x^s/s$ has a simple pole at $s=0$. So $f$ has a pole of order $2$ at $s=0$. So the residue is given by



$$lim_{sto 0}frac{d}{ds}left{sx^s.frac{zeta'(1+s)}{zeta(1+s)}right}.$$



I've stuck here ! How can I calculate this to prove the result ?










share|cite|improve this question









$endgroup$




Let, $displaystyle f(s)=frac{zeta'(1+s)}{zeta(1+s)}frac{x^s}{s}$. Prove that $Res(f,s=0)=A-log x$ , for some constant $A$.



At $s=0$ , $zeta(s)$ has a pole of order $1$ and $zeta'(s)$ has a pole of order $2$. So, $frac{zeta'(1+s)}{zeta(1+s)}$ has a simple pole at $s=0$. Again , $x^s/s$ has a simple pole at $s=0$. So $f$ has a pole of order $2$ at $s=0$. So the residue is given by



$$lim_{sto 0}frac{d}{ds}left{sx^s.frac{zeta'(1+s)}{zeta(1+s)}right}.$$



I've stuck here ! How can I calculate this to prove the result ?







complex-analysis riemann-zeta zeta-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 9 '18 at 7:30









TopoTopo

323314




323314








  • 1




    $begingroup$
    Hint: The answer should be that A is Euler–Mascheroni constant here.
    $endgroup$
    – Nanayajitzuki
    Dec 9 '18 at 8:06










  • $begingroup$
    $frac{x^s}{s} = frac{1}{s}+log x+O(s)$, do the same with $zeta'/zeta(1+s)$ and pick the coef of $1/s$ (which appears when integrating $int_{|s|=epsilon}$)
    $endgroup$
    – reuns
    Dec 9 '18 at 8:09
















  • 1




    $begingroup$
    Hint: The answer should be that A is Euler–Mascheroni constant here.
    $endgroup$
    – Nanayajitzuki
    Dec 9 '18 at 8:06










  • $begingroup$
    $frac{x^s}{s} = frac{1}{s}+log x+O(s)$, do the same with $zeta'/zeta(1+s)$ and pick the coef of $1/s$ (which appears when integrating $int_{|s|=epsilon}$)
    $endgroup$
    – reuns
    Dec 9 '18 at 8:09










1




1




$begingroup$
Hint: The answer should be that A is Euler–Mascheroni constant here.
$endgroup$
– Nanayajitzuki
Dec 9 '18 at 8:06




$begingroup$
Hint: The answer should be that A is Euler–Mascheroni constant here.
$endgroup$
– Nanayajitzuki
Dec 9 '18 at 8:06












$begingroup$
$frac{x^s}{s} = frac{1}{s}+log x+O(s)$, do the same with $zeta'/zeta(1+s)$ and pick the coef of $1/s$ (which appears when integrating $int_{|s|=epsilon}$)
$endgroup$
– reuns
Dec 9 '18 at 8:09






$begingroup$
$frac{x^s}{s} = frac{1}{s}+log x+O(s)$, do the same with $zeta'/zeta(1+s)$ and pick the coef of $1/s$ (which appears when integrating $int_{|s|=epsilon}$)
$endgroup$
– reuns
Dec 9 '18 at 8:09












2 Answers
2






active

oldest

votes


















1












$begingroup$

You could get an easy access to answer if you already know the Stieltjes constants which appears in the Laurent series expansion of $zeta(s)$



$$displaystyle zeta (s)={frac{1}{s-1}}+sum _{n=0}^{infty}{frac{(-1)^{n}}{n!}}gamma _{n}(s-1)^{n}$$



and you take the first and constant item



$$displaystyle zeta (s+1)={frac{1}{s}}+gamma_{0}+O(s)$$



then you can find



$$displaystyle begin{align}
frac{zeta'(1+s)}{zeta(1+s)}&=frac{dln(zeta(1+s))}{ds}\&=frac{d}{ds}left(ln(1+gamma_{0}s+O(s^2))-ln sright)=frac{d}{ds}left(gamma_{0}s+O(s^2)-ln sright)\&={-frac{1}{s}}+gamma_{0}+O(s)
end{align}$$



notice you have



$$displaystyle frac{x^s}{s}=frac{1}{s}+ln x+O(s)$$



so you can easily get



$$displaystyle f(s)=-frac{1}{s^2}+frac{gamma_{0}-ln x}{s}+O(1)$$



here $gamma_{0}$ is Euler–Mascheroni constant, and the simply proof on the constant appears in the series can see another question like this one.






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Due to the integral representation for the $zeta$ function, in a neighbourhood of $s=0$ we have
    $$ zeta(s+1)=frac{1}{s}+gamma+(gamma_1+o(1))s = frac{1}{s}left[1+gamma s+O(1)sright]tag{1} $$
    hence by applying $frac{d}{ds}log(cdot)$ to both sides
    $$ frac{zeta'(s+1)}{zeta(s+1)} = -frac{1}{s}+gamma+O(1)s tag{2} $$
    while
    $$ frac{x^s}{s} = frac{1}{s}exp(slog x)=frac{1}{s}+log x+O(1)slog^2(x)tag{3}$$
    hence by multiplying $(2)$ and $(3)$ we get that $s=0$ is a double pole of $frac{zeta'(s+1)}{zeta(s+1)}cdotfrac{x^s}{s}$ with residue $gamma-log x$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032120%2ffind-the-residue-of-frac-zeta1s-zeta1s-fracxss-at-s-0%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      You could get an easy access to answer if you already know the Stieltjes constants which appears in the Laurent series expansion of $zeta(s)$



      $$displaystyle zeta (s)={frac{1}{s-1}}+sum _{n=0}^{infty}{frac{(-1)^{n}}{n!}}gamma _{n}(s-1)^{n}$$



      and you take the first and constant item



      $$displaystyle zeta (s+1)={frac{1}{s}}+gamma_{0}+O(s)$$



      then you can find



      $$displaystyle begin{align}
      frac{zeta'(1+s)}{zeta(1+s)}&=frac{dln(zeta(1+s))}{ds}\&=frac{d}{ds}left(ln(1+gamma_{0}s+O(s^2))-ln sright)=frac{d}{ds}left(gamma_{0}s+O(s^2)-ln sright)\&={-frac{1}{s}}+gamma_{0}+O(s)
      end{align}$$



      notice you have



      $$displaystyle frac{x^s}{s}=frac{1}{s}+ln x+O(s)$$



      so you can easily get



      $$displaystyle f(s)=-frac{1}{s^2}+frac{gamma_{0}-ln x}{s}+O(1)$$



      here $gamma_{0}$ is Euler–Mascheroni constant, and the simply proof on the constant appears in the series can see another question like this one.






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        You could get an easy access to answer if you already know the Stieltjes constants which appears in the Laurent series expansion of $zeta(s)$



        $$displaystyle zeta (s)={frac{1}{s-1}}+sum _{n=0}^{infty}{frac{(-1)^{n}}{n!}}gamma _{n}(s-1)^{n}$$



        and you take the first and constant item



        $$displaystyle zeta (s+1)={frac{1}{s}}+gamma_{0}+O(s)$$



        then you can find



        $$displaystyle begin{align}
        frac{zeta'(1+s)}{zeta(1+s)}&=frac{dln(zeta(1+s))}{ds}\&=frac{d}{ds}left(ln(1+gamma_{0}s+O(s^2))-ln sright)=frac{d}{ds}left(gamma_{0}s+O(s^2)-ln sright)\&={-frac{1}{s}}+gamma_{0}+O(s)
        end{align}$$



        notice you have



        $$displaystyle frac{x^s}{s}=frac{1}{s}+ln x+O(s)$$



        so you can easily get



        $$displaystyle f(s)=-frac{1}{s^2}+frac{gamma_{0}-ln x}{s}+O(1)$$



        here $gamma_{0}$ is Euler–Mascheroni constant, and the simply proof on the constant appears in the series can see another question like this one.






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          You could get an easy access to answer if you already know the Stieltjes constants which appears in the Laurent series expansion of $zeta(s)$



          $$displaystyle zeta (s)={frac{1}{s-1}}+sum _{n=0}^{infty}{frac{(-1)^{n}}{n!}}gamma _{n}(s-1)^{n}$$



          and you take the first and constant item



          $$displaystyle zeta (s+1)={frac{1}{s}}+gamma_{0}+O(s)$$



          then you can find



          $$displaystyle begin{align}
          frac{zeta'(1+s)}{zeta(1+s)}&=frac{dln(zeta(1+s))}{ds}\&=frac{d}{ds}left(ln(1+gamma_{0}s+O(s^2))-ln sright)=frac{d}{ds}left(gamma_{0}s+O(s^2)-ln sright)\&={-frac{1}{s}}+gamma_{0}+O(s)
          end{align}$$



          notice you have



          $$displaystyle frac{x^s}{s}=frac{1}{s}+ln x+O(s)$$



          so you can easily get



          $$displaystyle f(s)=-frac{1}{s^2}+frac{gamma_{0}-ln x}{s}+O(1)$$



          here $gamma_{0}$ is Euler–Mascheroni constant, and the simply proof on the constant appears in the series can see another question like this one.






          share|cite|improve this answer











          $endgroup$



          You could get an easy access to answer if you already know the Stieltjes constants which appears in the Laurent series expansion of $zeta(s)$



          $$displaystyle zeta (s)={frac{1}{s-1}}+sum _{n=0}^{infty}{frac{(-1)^{n}}{n!}}gamma _{n}(s-1)^{n}$$



          and you take the first and constant item



          $$displaystyle zeta (s+1)={frac{1}{s}}+gamma_{0}+O(s)$$



          then you can find



          $$displaystyle begin{align}
          frac{zeta'(1+s)}{zeta(1+s)}&=frac{dln(zeta(1+s))}{ds}\&=frac{d}{ds}left(ln(1+gamma_{0}s+O(s^2))-ln sright)=frac{d}{ds}left(gamma_{0}s+O(s^2)-ln sright)\&={-frac{1}{s}}+gamma_{0}+O(s)
          end{align}$$



          notice you have



          $$displaystyle frac{x^s}{s}=frac{1}{s}+ln x+O(s)$$



          so you can easily get



          $$displaystyle f(s)=-frac{1}{s^2}+frac{gamma_{0}-ln x}{s}+O(1)$$



          here $gamma_{0}$ is Euler–Mascheroni constant, and the simply proof on the constant appears in the series can see another question like this one.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 9 '18 at 11:48

























          answered Dec 9 '18 at 11:40









          NanayajitzukiNanayajitzuki

          3185




          3185























              1












              $begingroup$

              Due to the integral representation for the $zeta$ function, in a neighbourhood of $s=0$ we have
              $$ zeta(s+1)=frac{1}{s}+gamma+(gamma_1+o(1))s = frac{1}{s}left[1+gamma s+O(1)sright]tag{1} $$
              hence by applying $frac{d}{ds}log(cdot)$ to both sides
              $$ frac{zeta'(s+1)}{zeta(s+1)} = -frac{1}{s}+gamma+O(1)s tag{2} $$
              while
              $$ frac{x^s}{s} = frac{1}{s}exp(slog x)=frac{1}{s}+log x+O(1)slog^2(x)tag{3}$$
              hence by multiplying $(2)$ and $(3)$ we get that $s=0$ is a double pole of $frac{zeta'(s+1)}{zeta(s+1)}cdotfrac{x^s}{s}$ with residue $gamma-log x$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Due to the integral representation for the $zeta$ function, in a neighbourhood of $s=0$ we have
                $$ zeta(s+1)=frac{1}{s}+gamma+(gamma_1+o(1))s = frac{1}{s}left[1+gamma s+O(1)sright]tag{1} $$
                hence by applying $frac{d}{ds}log(cdot)$ to both sides
                $$ frac{zeta'(s+1)}{zeta(s+1)} = -frac{1}{s}+gamma+O(1)s tag{2} $$
                while
                $$ frac{x^s}{s} = frac{1}{s}exp(slog x)=frac{1}{s}+log x+O(1)slog^2(x)tag{3}$$
                hence by multiplying $(2)$ and $(3)$ we get that $s=0$ is a double pole of $frac{zeta'(s+1)}{zeta(s+1)}cdotfrac{x^s}{s}$ with residue $gamma-log x$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Due to the integral representation for the $zeta$ function, in a neighbourhood of $s=0$ we have
                  $$ zeta(s+1)=frac{1}{s}+gamma+(gamma_1+o(1))s = frac{1}{s}left[1+gamma s+O(1)sright]tag{1} $$
                  hence by applying $frac{d}{ds}log(cdot)$ to both sides
                  $$ frac{zeta'(s+1)}{zeta(s+1)} = -frac{1}{s}+gamma+O(1)s tag{2} $$
                  while
                  $$ frac{x^s}{s} = frac{1}{s}exp(slog x)=frac{1}{s}+log x+O(1)slog^2(x)tag{3}$$
                  hence by multiplying $(2)$ and $(3)$ we get that $s=0$ is a double pole of $frac{zeta'(s+1)}{zeta(s+1)}cdotfrac{x^s}{s}$ with residue $gamma-log x$.






                  share|cite|improve this answer









                  $endgroup$



                  Due to the integral representation for the $zeta$ function, in a neighbourhood of $s=0$ we have
                  $$ zeta(s+1)=frac{1}{s}+gamma+(gamma_1+o(1))s = frac{1}{s}left[1+gamma s+O(1)sright]tag{1} $$
                  hence by applying $frac{d}{ds}log(cdot)$ to both sides
                  $$ frac{zeta'(s+1)}{zeta(s+1)} = -frac{1}{s}+gamma+O(1)s tag{2} $$
                  while
                  $$ frac{x^s}{s} = frac{1}{s}exp(slog x)=frac{1}{s}+log x+O(1)slog^2(x)tag{3}$$
                  hence by multiplying $(2)$ and $(3)$ we get that $s=0$ is a double pole of $frac{zeta'(s+1)}{zeta(s+1)}cdotfrac{x^s}{s}$ with residue $gamma-log x$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 9 '18 at 11:31









                  Jack D'AurizioJack D'Aurizio

                  290k33282662




                  290k33282662






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032120%2ffind-the-residue-of-frac-zeta1s-zeta1s-fracxss-at-s-0%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Plaza Victoria

                      Puebla de Zaragoza

                      Musa