Using least common multiple to prove there exists a prime between $2x$ and $3x$
$begingroup$
Let $text{lcm}(x)$ be the least common multiple of ${1,2,3,dots, x}$.
Hanson showed that $text{lcm}(x) < 3^x$
I'm wondering if the following argument is valid for showing that there is always a prime $p$ such that $2x < p < 3x$ for $x ge 246$.
Here is my argument:
(1) if prime $p$ satisfies $2x < p < 3x$, then $p | {{3x}choose{2x}}$.
This follows from the fact that ${{3x}choose{2x}}$ is an integer and that $p$ will not divide out by $2x!$ or $x!$.
(2) ${{3x}choose{2x}} > dfrac{6^x}{x}$ for $x ge 4$
For $x ge 4$, ${{2x}choose{x}} ge dfrac{4^x}{x}$ since ${8choose4} = 70 > dfrac{4^4}{4} = 64$ and ${{2x}choose{x}} = 2left(dfrac{2x-1}{x}right){2(x-1)choose{x-1}} > 2left(dfrac{2x-1}{x}right)left(dfrac{4^{x-1}}{x-1}right) > dfrac{4^x}{x}$ and ${{3x}choose{2x}} > left(dfrac{3x}{2x}right)^x {{2x}choose{x}} > left(dfrac{3}{2}right)^xdfrac{4^x}{x}$
(3) For any prime $q$ such that $frac{3x}{2} le q le 2x$, it follows that $2q > 3x$ and $q nmid {{3x}choose{2x}}$ since it will be divided out by $2x!$.
(4) Assume that there is no prime greater than $2x$ that divides ${{3x}choose{2x}}$
(5) It follows that ${{3x}choose{2x}} < text{lcm}(frac{3x}{2})text{lcm}(sqrt{3x})$ since:
From Legendre's Formula, it is well known that if $v_p(x)$ is the highest power of $p$ that divides $x$, then $v_p({{3x}choose{2x}}) = sumlimits_{i le log_p(3n)} leftlfloorfrac{3x}{p^i}rightrfloor - leftlfloorfrac{2x}{p^i}rightrfloor - leftlfloorfrac{x}{p^i}rightrfloor$ which equals $1$ or $0$ for each $i$ so that $v_p({{3x}choose{2x}}) le log_p(3x)$
If a prime $p > sqrt{3x}$, then $v_p({{3x}choose{2x}}) = 1$ and $p | text{lcm}(frac{3x}{2})$
If a prime $p le sqrt{3x}$, then $v_p({{3x}choose{2x}}) le log_p(3x) le v_p(frac{3x}{2})+1$
(6) So that: $dfrac{6^x}{x} < 3^{3x/2}3^{sqrt{3x}}$
(7) But this is not true for $x ge 246$ since:
$246ln 6 - ln 246 > 435.26 > 435.24 > frac{3}{2}(246)ln 3 + sqrt{3times246}ln 3$
and for $x ge 246$, $6 > (3^{3/2})(3^{sqrt{3x+2} - sqrt{3x}})left(dfrac{x+1}{x}right)$
(8) So we can reject step (4).
elementary-number-theory proof-verification prime-numbers least-common-multiple
$endgroup$
add a comment |
$begingroup$
Let $text{lcm}(x)$ be the least common multiple of ${1,2,3,dots, x}$.
Hanson showed that $text{lcm}(x) < 3^x$
I'm wondering if the following argument is valid for showing that there is always a prime $p$ such that $2x < p < 3x$ for $x ge 246$.
Here is my argument:
(1) if prime $p$ satisfies $2x < p < 3x$, then $p | {{3x}choose{2x}}$.
This follows from the fact that ${{3x}choose{2x}}$ is an integer and that $p$ will not divide out by $2x!$ or $x!$.
(2) ${{3x}choose{2x}} > dfrac{6^x}{x}$ for $x ge 4$
For $x ge 4$, ${{2x}choose{x}} ge dfrac{4^x}{x}$ since ${8choose4} = 70 > dfrac{4^4}{4} = 64$ and ${{2x}choose{x}} = 2left(dfrac{2x-1}{x}right){2(x-1)choose{x-1}} > 2left(dfrac{2x-1}{x}right)left(dfrac{4^{x-1}}{x-1}right) > dfrac{4^x}{x}$ and ${{3x}choose{2x}} > left(dfrac{3x}{2x}right)^x {{2x}choose{x}} > left(dfrac{3}{2}right)^xdfrac{4^x}{x}$
(3) For any prime $q$ such that $frac{3x}{2} le q le 2x$, it follows that $2q > 3x$ and $q nmid {{3x}choose{2x}}$ since it will be divided out by $2x!$.
(4) Assume that there is no prime greater than $2x$ that divides ${{3x}choose{2x}}$
(5) It follows that ${{3x}choose{2x}} < text{lcm}(frac{3x}{2})text{lcm}(sqrt{3x})$ since:
From Legendre's Formula, it is well known that if $v_p(x)$ is the highest power of $p$ that divides $x$, then $v_p({{3x}choose{2x}}) = sumlimits_{i le log_p(3n)} leftlfloorfrac{3x}{p^i}rightrfloor - leftlfloorfrac{2x}{p^i}rightrfloor - leftlfloorfrac{x}{p^i}rightrfloor$ which equals $1$ or $0$ for each $i$ so that $v_p({{3x}choose{2x}}) le log_p(3x)$
If a prime $p > sqrt{3x}$, then $v_p({{3x}choose{2x}}) = 1$ and $p | text{lcm}(frac{3x}{2})$
If a prime $p le sqrt{3x}$, then $v_p({{3x}choose{2x}}) le log_p(3x) le v_p(frac{3x}{2})+1$
(6) So that: $dfrac{6^x}{x} < 3^{3x/2}3^{sqrt{3x}}$
(7) But this is not true for $x ge 246$ since:
$246ln 6 - ln 246 > 435.26 > 435.24 > frac{3}{2}(246)ln 3 + sqrt{3times246}ln 3$
and for $x ge 246$, $6 > (3^{3/2})(3^{sqrt{3x+2} - sqrt{3x}})left(dfrac{x+1}{x}right)$
(8) So we can reject step (4).
elementary-number-theory proof-verification prime-numbers least-common-multiple
$endgroup$
add a comment |
$begingroup$
Let $text{lcm}(x)$ be the least common multiple of ${1,2,3,dots, x}$.
Hanson showed that $text{lcm}(x) < 3^x$
I'm wondering if the following argument is valid for showing that there is always a prime $p$ such that $2x < p < 3x$ for $x ge 246$.
Here is my argument:
(1) if prime $p$ satisfies $2x < p < 3x$, then $p | {{3x}choose{2x}}$.
This follows from the fact that ${{3x}choose{2x}}$ is an integer and that $p$ will not divide out by $2x!$ or $x!$.
(2) ${{3x}choose{2x}} > dfrac{6^x}{x}$ for $x ge 4$
For $x ge 4$, ${{2x}choose{x}} ge dfrac{4^x}{x}$ since ${8choose4} = 70 > dfrac{4^4}{4} = 64$ and ${{2x}choose{x}} = 2left(dfrac{2x-1}{x}right){2(x-1)choose{x-1}} > 2left(dfrac{2x-1}{x}right)left(dfrac{4^{x-1}}{x-1}right) > dfrac{4^x}{x}$ and ${{3x}choose{2x}} > left(dfrac{3x}{2x}right)^x {{2x}choose{x}} > left(dfrac{3}{2}right)^xdfrac{4^x}{x}$
(3) For any prime $q$ such that $frac{3x}{2} le q le 2x$, it follows that $2q > 3x$ and $q nmid {{3x}choose{2x}}$ since it will be divided out by $2x!$.
(4) Assume that there is no prime greater than $2x$ that divides ${{3x}choose{2x}}$
(5) It follows that ${{3x}choose{2x}} < text{lcm}(frac{3x}{2})text{lcm}(sqrt{3x})$ since:
From Legendre's Formula, it is well known that if $v_p(x)$ is the highest power of $p$ that divides $x$, then $v_p({{3x}choose{2x}}) = sumlimits_{i le log_p(3n)} leftlfloorfrac{3x}{p^i}rightrfloor - leftlfloorfrac{2x}{p^i}rightrfloor - leftlfloorfrac{x}{p^i}rightrfloor$ which equals $1$ or $0$ for each $i$ so that $v_p({{3x}choose{2x}}) le log_p(3x)$
If a prime $p > sqrt{3x}$, then $v_p({{3x}choose{2x}}) = 1$ and $p | text{lcm}(frac{3x}{2})$
If a prime $p le sqrt{3x}$, then $v_p({{3x}choose{2x}}) le log_p(3x) le v_p(frac{3x}{2})+1$
(6) So that: $dfrac{6^x}{x} < 3^{3x/2}3^{sqrt{3x}}$
(7) But this is not true for $x ge 246$ since:
$246ln 6 - ln 246 > 435.26 > 435.24 > frac{3}{2}(246)ln 3 + sqrt{3times246}ln 3$
and for $x ge 246$, $6 > (3^{3/2})(3^{sqrt{3x+2} - sqrt{3x}})left(dfrac{x+1}{x}right)$
(8) So we can reject step (4).
elementary-number-theory proof-verification prime-numbers least-common-multiple
$endgroup$
Let $text{lcm}(x)$ be the least common multiple of ${1,2,3,dots, x}$.
Hanson showed that $text{lcm}(x) < 3^x$
I'm wondering if the following argument is valid for showing that there is always a prime $p$ such that $2x < p < 3x$ for $x ge 246$.
Here is my argument:
(1) if prime $p$ satisfies $2x < p < 3x$, then $p | {{3x}choose{2x}}$.
This follows from the fact that ${{3x}choose{2x}}$ is an integer and that $p$ will not divide out by $2x!$ or $x!$.
(2) ${{3x}choose{2x}} > dfrac{6^x}{x}$ for $x ge 4$
For $x ge 4$, ${{2x}choose{x}} ge dfrac{4^x}{x}$ since ${8choose4} = 70 > dfrac{4^4}{4} = 64$ and ${{2x}choose{x}} = 2left(dfrac{2x-1}{x}right){2(x-1)choose{x-1}} > 2left(dfrac{2x-1}{x}right)left(dfrac{4^{x-1}}{x-1}right) > dfrac{4^x}{x}$ and ${{3x}choose{2x}} > left(dfrac{3x}{2x}right)^x {{2x}choose{x}} > left(dfrac{3}{2}right)^xdfrac{4^x}{x}$
(3) For any prime $q$ such that $frac{3x}{2} le q le 2x$, it follows that $2q > 3x$ and $q nmid {{3x}choose{2x}}$ since it will be divided out by $2x!$.
(4) Assume that there is no prime greater than $2x$ that divides ${{3x}choose{2x}}$
(5) It follows that ${{3x}choose{2x}} < text{lcm}(frac{3x}{2})text{lcm}(sqrt{3x})$ since:
From Legendre's Formula, it is well known that if $v_p(x)$ is the highest power of $p$ that divides $x$, then $v_p({{3x}choose{2x}}) = sumlimits_{i le log_p(3n)} leftlfloorfrac{3x}{p^i}rightrfloor - leftlfloorfrac{2x}{p^i}rightrfloor - leftlfloorfrac{x}{p^i}rightrfloor$ which equals $1$ or $0$ for each $i$ so that $v_p({{3x}choose{2x}}) le log_p(3x)$
If a prime $p > sqrt{3x}$, then $v_p({{3x}choose{2x}}) = 1$ and $p | text{lcm}(frac{3x}{2})$
If a prime $p le sqrt{3x}$, then $v_p({{3x}choose{2x}}) le log_p(3x) le v_p(frac{3x}{2})+1$
(6) So that: $dfrac{6^x}{x} < 3^{3x/2}3^{sqrt{3x}}$
(7) But this is not true for $x ge 246$ since:
$246ln 6 - ln 246 > 435.26 > 435.24 > frac{3}{2}(246)ln 3 + sqrt{3times246}ln 3$
and for $x ge 246$, $6 > (3^{3/2})(3^{sqrt{3x+2} - sqrt{3x}})left(dfrac{x+1}{x}right)$
(8) So we can reject step (4).
elementary-number-theory proof-verification prime-numbers least-common-multiple
elementary-number-theory proof-verification prime-numbers least-common-multiple
asked Dec 9 '18 at 8:56
Larry FreemanLarry Freeman
3,25021240
3,25021240
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032173%2fusing-least-common-multiple-to-prove-there-exists-a-prime-between-2x-and-3x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032173%2fusing-least-common-multiple-to-prove-there-exists-a-prime-between-2x-and-3x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown