Using least common multiple to prove there exists a prime between $2x$ and $3x$












2












$begingroup$


Let $text{lcm}(x)$ be the least common multiple of ${1,2,3,dots, x}$.



Hanson showed that $text{lcm}(x) < 3^x$



I'm wondering if the following argument is valid for showing that there is always a prime $p$ such that $2x < p < 3x$ for $x ge 246$.



Here is my argument:



(1) if prime $p$ satisfies $2x < p < 3x$, then $p | {{3x}choose{2x}}$.




This follows from the fact that ${{3x}choose{2x}}$ is an integer and that $p$ will not divide out by $2x!$ or $x!$.




(2) ${{3x}choose{2x}} > dfrac{6^x}{x}$ for $x ge 4$




For $x ge 4$, ${{2x}choose{x}} ge dfrac{4^x}{x}$ since ${8choose4} = 70 > dfrac{4^4}{4} = 64$ and ${{2x}choose{x}} = 2left(dfrac{2x-1}{x}right){2(x-1)choose{x-1}} > 2left(dfrac{2x-1}{x}right)left(dfrac{4^{x-1}}{x-1}right) > dfrac{4^x}{x}$ and ${{3x}choose{2x}} > left(dfrac{3x}{2x}right)^x {{2x}choose{x}} > left(dfrac{3}{2}right)^xdfrac{4^x}{x}$




(3) For any prime $q$ such that $frac{3x}{2} le q le 2x$, it follows that $2q > 3x$ and $q nmid {{3x}choose{2x}}$ since it will be divided out by $2x!$.



(4) Assume that there is no prime greater than $2x$ that divides ${{3x}choose{2x}}$



(5) It follows that ${{3x}choose{2x}} < text{lcm}(frac{3x}{2})text{lcm}(sqrt{3x})$ since:





  • From Legendre's Formula, it is well known that if $v_p(x)$ is the highest power of $p$ that divides $x$, then $v_p({{3x}choose{2x}}) = sumlimits_{i le log_p(3n)} leftlfloorfrac{3x}{p^i}rightrfloor - leftlfloorfrac{2x}{p^i}rightrfloor - leftlfloorfrac{x}{p^i}rightrfloor$ which equals $1$ or $0$ for each $i$ so that $v_p({{3x}choose{2x}}) le log_p(3x)$


  • If a prime $p > sqrt{3x}$, then $v_p({{3x}choose{2x}}) = 1$ and $p | text{lcm}(frac{3x}{2})$


  • If a prime $p le sqrt{3x}$, then $v_p({{3x}choose{2x}}) le log_p(3x) le v_p(frac{3x}{2})+1$





(6) So that: $dfrac{6^x}{x} < 3^{3x/2}3^{sqrt{3x}}$



(7) But this is not true for $x ge 246$ since:




$246ln 6 - ln 246 > 435.26 > 435.24 > frac{3}{2}(246)ln 3 + sqrt{3times246}ln 3$



and for $x ge 246$, $6 > (3^{3/2})(3^{sqrt{3x+2} - sqrt{3x}})left(dfrac{x+1}{x}right)$




(8) So we can reject step (4).










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Let $text{lcm}(x)$ be the least common multiple of ${1,2,3,dots, x}$.



    Hanson showed that $text{lcm}(x) < 3^x$



    I'm wondering if the following argument is valid for showing that there is always a prime $p$ such that $2x < p < 3x$ for $x ge 246$.



    Here is my argument:



    (1) if prime $p$ satisfies $2x < p < 3x$, then $p | {{3x}choose{2x}}$.




    This follows from the fact that ${{3x}choose{2x}}$ is an integer and that $p$ will not divide out by $2x!$ or $x!$.




    (2) ${{3x}choose{2x}} > dfrac{6^x}{x}$ for $x ge 4$




    For $x ge 4$, ${{2x}choose{x}} ge dfrac{4^x}{x}$ since ${8choose4} = 70 > dfrac{4^4}{4} = 64$ and ${{2x}choose{x}} = 2left(dfrac{2x-1}{x}right){2(x-1)choose{x-1}} > 2left(dfrac{2x-1}{x}right)left(dfrac{4^{x-1}}{x-1}right) > dfrac{4^x}{x}$ and ${{3x}choose{2x}} > left(dfrac{3x}{2x}right)^x {{2x}choose{x}} > left(dfrac{3}{2}right)^xdfrac{4^x}{x}$




    (3) For any prime $q$ such that $frac{3x}{2} le q le 2x$, it follows that $2q > 3x$ and $q nmid {{3x}choose{2x}}$ since it will be divided out by $2x!$.



    (4) Assume that there is no prime greater than $2x$ that divides ${{3x}choose{2x}}$



    (5) It follows that ${{3x}choose{2x}} < text{lcm}(frac{3x}{2})text{lcm}(sqrt{3x})$ since:





    • From Legendre's Formula, it is well known that if $v_p(x)$ is the highest power of $p$ that divides $x$, then $v_p({{3x}choose{2x}}) = sumlimits_{i le log_p(3n)} leftlfloorfrac{3x}{p^i}rightrfloor - leftlfloorfrac{2x}{p^i}rightrfloor - leftlfloorfrac{x}{p^i}rightrfloor$ which equals $1$ or $0$ for each $i$ so that $v_p({{3x}choose{2x}}) le log_p(3x)$


    • If a prime $p > sqrt{3x}$, then $v_p({{3x}choose{2x}}) = 1$ and $p | text{lcm}(frac{3x}{2})$


    • If a prime $p le sqrt{3x}$, then $v_p({{3x}choose{2x}}) le log_p(3x) le v_p(frac{3x}{2})+1$





    (6) So that: $dfrac{6^x}{x} < 3^{3x/2}3^{sqrt{3x}}$



    (7) But this is not true for $x ge 246$ since:




    $246ln 6 - ln 246 > 435.26 > 435.24 > frac{3}{2}(246)ln 3 + sqrt{3times246}ln 3$



    and for $x ge 246$, $6 > (3^{3/2})(3^{sqrt{3x+2} - sqrt{3x}})left(dfrac{x+1}{x}right)$




    (8) So we can reject step (4).










    share|cite|improve this question









    $endgroup$















      2












      2








      2


      2



      $begingroup$


      Let $text{lcm}(x)$ be the least common multiple of ${1,2,3,dots, x}$.



      Hanson showed that $text{lcm}(x) < 3^x$



      I'm wondering if the following argument is valid for showing that there is always a prime $p$ such that $2x < p < 3x$ for $x ge 246$.



      Here is my argument:



      (1) if prime $p$ satisfies $2x < p < 3x$, then $p | {{3x}choose{2x}}$.




      This follows from the fact that ${{3x}choose{2x}}$ is an integer and that $p$ will not divide out by $2x!$ or $x!$.




      (2) ${{3x}choose{2x}} > dfrac{6^x}{x}$ for $x ge 4$




      For $x ge 4$, ${{2x}choose{x}} ge dfrac{4^x}{x}$ since ${8choose4} = 70 > dfrac{4^4}{4} = 64$ and ${{2x}choose{x}} = 2left(dfrac{2x-1}{x}right){2(x-1)choose{x-1}} > 2left(dfrac{2x-1}{x}right)left(dfrac{4^{x-1}}{x-1}right) > dfrac{4^x}{x}$ and ${{3x}choose{2x}} > left(dfrac{3x}{2x}right)^x {{2x}choose{x}} > left(dfrac{3}{2}right)^xdfrac{4^x}{x}$




      (3) For any prime $q$ such that $frac{3x}{2} le q le 2x$, it follows that $2q > 3x$ and $q nmid {{3x}choose{2x}}$ since it will be divided out by $2x!$.



      (4) Assume that there is no prime greater than $2x$ that divides ${{3x}choose{2x}}$



      (5) It follows that ${{3x}choose{2x}} < text{lcm}(frac{3x}{2})text{lcm}(sqrt{3x})$ since:





      • From Legendre's Formula, it is well known that if $v_p(x)$ is the highest power of $p$ that divides $x$, then $v_p({{3x}choose{2x}}) = sumlimits_{i le log_p(3n)} leftlfloorfrac{3x}{p^i}rightrfloor - leftlfloorfrac{2x}{p^i}rightrfloor - leftlfloorfrac{x}{p^i}rightrfloor$ which equals $1$ or $0$ for each $i$ so that $v_p({{3x}choose{2x}}) le log_p(3x)$


      • If a prime $p > sqrt{3x}$, then $v_p({{3x}choose{2x}}) = 1$ and $p | text{lcm}(frac{3x}{2})$


      • If a prime $p le sqrt{3x}$, then $v_p({{3x}choose{2x}}) le log_p(3x) le v_p(frac{3x}{2})+1$





      (6) So that: $dfrac{6^x}{x} < 3^{3x/2}3^{sqrt{3x}}$



      (7) But this is not true for $x ge 246$ since:




      $246ln 6 - ln 246 > 435.26 > 435.24 > frac{3}{2}(246)ln 3 + sqrt{3times246}ln 3$



      and for $x ge 246$, $6 > (3^{3/2})(3^{sqrt{3x+2} - sqrt{3x}})left(dfrac{x+1}{x}right)$




      (8) So we can reject step (4).










      share|cite|improve this question









      $endgroup$




      Let $text{lcm}(x)$ be the least common multiple of ${1,2,3,dots, x}$.



      Hanson showed that $text{lcm}(x) < 3^x$



      I'm wondering if the following argument is valid for showing that there is always a prime $p$ such that $2x < p < 3x$ for $x ge 246$.



      Here is my argument:



      (1) if prime $p$ satisfies $2x < p < 3x$, then $p | {{3x}choose{2x}}$.




      This follows from the fact that ${{3x}choose{2x}}$ is an integer and that $p$ will not divide out by $2x!$ or $x!$.




      (2) ${{3x}choose{2x}} > dfrac{6^x}{x}$ for $x ge 4$




      For $x ge 4$, ${{2x}choose{x}} ge dfrac{4^x}{x}$ since ${8choose4} = 70 > dfrac{4^4}{4} = 64$ and ${{2x}choose{x}} = 2left(dfrac{2x-1}{x}right){2(x-1)choose{x-1}} > 2left(dfrac{2x-1}{x}right)left(dfrac{4^{x-1}}{x-1}right) > dfrac{4^x}{x}$ and ${{3x}choose{2x}} > left(dfrac{3x}{2x}right)^x {{2x}choose{x}} > left(dfrac{3}{2}right)^xdfrac{4^x}{x}$




      (3) For any prime $q$ such that $frac{3x}{2} le q le 2x$, it follows that $2q > 3x$ and $q nmid {{3x}choose{2x}}$ since it will be divided out by $2x!$.



      (4) Assume that there is no prime greater than $2x$ that divides ${{3x}choose{2x}}$



      (5) It follows that ${{3x}choose{2x}} < text{lcm}(frac{3x}{2})text{lcm}(sqrt{3x})$ since:





      • From Legendre's Formula, it is well known that if $v_p(x)$ is the highest power of $p$ that divides $x$, then $v_p({{3x}choose{2x}}) = sumlimits_{i le log_p(3n)} leftlfloorfrac{3x}{p^i}rightrfloor - leftlfloorfrac{2x}{p^i}rightrfloor - leftlfloorfrac{x}{p^i}rightrfloor$ which equals $1$ or $0$ for each $i$ so that $v_p({{3x}choose{2x}}) le log_p(3x)$


      • If a prime $p > sqrt{3x}$, then $v_p({{3x}choose{2x}}) = 1$ and $p | text{lcm}(frac{3x}{2})$


      • If a prime $p le sqrt{3x}$, then $v_p({{3x}choose{2x}}) le log_p(3x) le v_p(frac{3x}{2})+1$





      (6) So that: $dfrac{6^x}{x} < 3^{3x/2}3^{sqrt{3x}}$



      (7) But this is not true for $x ge 246$ since:




      $246ln 6 - ln 246 > 435.26 > 435.24 > frac{3}{2}(246)ln 3 + sqrt{3times246}ln 3$



      and for $x ge 246$, $6 > (3^{3/2})(3^{sqrt{3x+2} - sqrt{3x}})left(dfrac{x+1}{x}right)$




      (8) So we can reject step (4).







      elementary-number-theory proof-verification prime-numbers least-common-multiple






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 9 '18 at 8:56









      Larry FreemanLarry Freeman

      3,25021240




      3,25021240






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032173%2fusing-least-common-multiple-to-prove-there-exists-a-prime-between-2x-and-3x%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032173%2fusing-least-common-multiple-to-prove-there-exists-a-prime-between-2x-and-3x%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa