Compute the $m$th derivative of the sigmoid function $x(t)=1/(1+e^{-at})$












5












$begingroup$



Compute the $m$th derivative of the sigmoid function $x(t)=1/(1+e^{-at})$.




I hardly understand English.
I wrote a question using translation.
I want to generalize.



$a$ is a constant



$$x(t) = frac{1}{1+e^{-at}}$$



$x'=left(frac{1}{1+e^{-at}}right)'$
$=((1+e^{-at})^{-1})'$
$=(-(1+e^{-at})^{-2})(-ae^{-at})$
$=frac{ae^{-at}}{(1+e^{-at})^{2}}$
$=frac{a}{1+e^{-at}}frac{e^{-at}+1-1}{1+e^{-at}} $
$=frac{a}{1+e^{-at}}left(1-frac{1}{1+e^{-at}}right)$
$=ax(t)(1-x(t))$



$x''=(ax(1-x))'$
$=a(x'(1-x)+x(1-x)')$
$=aleft{ax(1-x)(1-x)+x(-ax(1-x))right}$
$=a(ax(1-x)^{2}-ax^{2}(1-x))$
$=a^{2}x(1-x)(1-x-x)$
$=a^{2}x(1-x)(1-2x)$



$p=x(1-x),q=(1-2x)$



$p'=ax(1-x)(1-2x)=apq$



$q'=(1-2x)'=-2ax(1-x)=-2ap$



$q^{2} $
$=(1-2x)^{2}$
$=(1-4x+4x^{2})$
$=(1-4x(1-x))$
$=(1-4p)$



$x^{(3)}=(a^{2}pq)'$
$=a^{2}(p'q+pq')$
$=a^{2}(apqq+p(-2ap))$
$=a^{2}(apq^{2}-2ap^{2})$
$=a^{2}(ap(1-4p)+p(-2ap))$
$=a^{3}p((1-4p)+(-2p))$
$=a^{3}p(1-6p)$



$x'=ap$



$x''=a^{2}pq$



$x^{(3)}=a^{3}p(1-6p)$
$x^{(4)}=a^{4}pq(1-12p)$
$x^{(5)}=a^{5}p(1-30p+120p^{2})$
$x^{(6)}=a^{6}pq(1-60p+360p^{2})$
$x^{(7)}=a^{7}p(1-126p+1680p^{2}-5040p^{3})$
$x^{(8)}=a^{8}pq(1-252p+5040p^{2}-20160p^{3})$



C are constant
$n = 0,1,2,3....$



$x^{(m)}$ $(m=1,3,5...)$



$(p(C+Cp+cdots+Cp^{n}))'$
$=p'(C+Cp+cdots+Cp^{n})+p(C+Cp+cdots+Cp^{n})'$
$=apq(C+Cp+cdots+Cp^{n})+p(Capq+cdots+nCp^{n-1}apq)$
$=qpq(C+Cp+cdots+Cp^{n})+apq(Cp+cdots+nCp^{n})$
$=apq(C+2Cp+cdots+(n+1)Cp^{n})$
$=apq(C+Cp+cdots+Cp^{n})$ $----(1)$



$x^{(m)}$ $(m=2,4,6...)$



$(pq(C+Cp+cdots+Cp^{n}))'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+pq(Capq+cdots+nCp^{n-1}apq)$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+apq^{2}(Cp+cdots+nCp^{n})$
$=apleft{(1-6p)(C+Cp+cdots+Cp^{n})+(1-4p)(Cp+cdots+nCp^{n})right}$
$=apleft{(1-6p)C+(2-10p)Cp+cdots+((n+1)-2(2n+3)p)Cp^{n}right}$
$=apleft{C+(-4)Cp+cdots+(-(3n+1))Cp^{n}+(-2(2n+3))Cp^{n+1}right}$
$=ap(C+Cp+cdots+Cp^{n+1})$ $----(2)$



$(1)->(2)->(1)->(2)->.........$



$x^{(m)}=?$



enter image description here
Postscript



$frac{d^m x}{dt^m}=a^m P_m(x)$



$b=x(1-x)$
$b'=(1-2x)$
$b''=-2$
$b'''=0$



$x'=ab$
$x''=a^{2}b(b')$
$x^{(3)}=a^{3}b((b')^2+b(b')^0b'')$
$x^{(4)}=a^{4}b((b')^3+4b(b')^1b'')$
$x^{(5)}=a^{5}b((b')^4+11b(b')^2b''+4b^2(b')^0(b'')^2)$
$x^{(6)}=a^{6}b((b')^5+26b(b')^3b''+34b^2(b')^1(b'')^2)$
$x^{(7)}=a^{7}b((b')^6+57b(b')^4b''+180b^2(b')^2(b'')^2+34b^3(b')^0(b'')^3)$



$$x^{(m)}=a^{m}bBiggl((b')^{m-1} + left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}b(b')^{m-3}b'' + left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}b^2(b')^{m-5}(b'')^2 + left{sum_{k=6}^{m-1} 4^{k-6}S_{left[2right]{m-k+4}}(m-k)right}b^3(b')^{m-7}(b'')^3 + ...... Biggr)$$



$$S_{left[1right]{m}} = left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}$$
$$S_{left[2right]{m}} = left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
    $endgroup$
    – Hans Engler
    Dec 19 '18 at 14:14










  • $begingroup$
    Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
    $endgroup$
    – user625311
    Dec 20 '18 at 15:30












  • $begingroup$
    Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
    $endgroup$
    – J.G.
    Dec 20 '18 at 16:09






  • 1




    $begingroup$
    $frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
    $endgroup$
    – Mariusz Iwaniuk
    Dec 20 '18 at 17:54
















5












$begingroup$



Compute the $m$th derivative of the sigmoid function $x(t)=1/(1+e^{-at})$.




I hardly understand English.
I wrote a question using translation.
I want to generalize.



$a$ is a constant



$$x(t) = frac{1}{1+e^{-at}}$$



$x'=left(frac{1}{1+e^{-at}}right)'$
$=((1+e^{-at})^{-1})'$
$=(-(1+e^{-at})^{-2})(-ae^{-at})$
$=frac{ae^{-at}}{(1+e^{-at})^{2}}$
$=frac{a}{1+e^{-at}}frac{e^{-at}+1-1}{1+e^{-at}} $
$=frac{a}{1+e^{-at}}left(1-frac{1}{1+e^{-at}}right)$
$=ax(t)(1-x(t))$



$x''=(ax(1-x))'$
$=a(x'(1-x)+x(1-x)')$
$=aleft{ax(1-x)(1-x)+x(-ax(1-x))right}$
$=a(ax(1-x)^{2}-ax^{2}(1-x))$
$=a^{2}x(1-x)(1-x-x)$
$=a^{2}x(1-x)(1-2x)$



$p=x(1-x),q=(1-2x)$



$p'=ax(1-x)(1-2x)=apq$



$q'=(1-2x)'=-2ax(1-x)=-2ap$



$q^{2} $
$=(1-2x)^{2}$
$=(1-4x+4x^{2})$
$=(1-4x(1-x))$
$=(1-4p)$



$x^{(3)}=(a^{2}pq)'$
$=a^{2}(p'q+pq')$
$=a^{2}(apqq+p(-2ap))$
$=a^{2}(apq^{2}-2ap^{2})$
$=a^{2}(ap(1-4p)+p(-2ap))$
$=a^{3}p((1-4p)+(-2p))$
$=a^{3}p(1-6p)$



$x'=ap$



$x''=a^{2}pq$



$x^{(3)}=a^{3}p(1-6p)$
$x^{(4)}=a^{4}pq(1-12p)$
$x^{(5)}=a^{5}p(1-30p+120p^{2})$
$x^{(6)}=a^{6}pq(1-60p+360p^{2})$
$x^{(7)}=a^{7}p(1-126p+1680p^{2}-5040p^{3})$
$x^{(8)}=a^{8}pq(1-252p+5040p^{2}-20160p^{3})$



C are constant
$n = 0,1,2,3....$



$x^{(m)}$ $(m=1,3,5...)$



$(p(C+Cp+cdots+Cp^{n}))'$
$=p'(C+Cp+cdots+Cp^{n})+p(C+Cp+cdots+Cp^{n})'$
$=apq(C+Cp+cdots+Cp^{n})+p(Capq+cdots+nCp^{n-1}apq)$
$=qpq(C+Cp+cdots+Cp^{n})+apq(Cp+cdots+nCp^{n})$
$=apq(C+2Cp+cdots+(n+1)Cp^{n})$
$=apq(C+Cp+cdots+Cp^{n})$ $----(1)$



$x^{(m)}$ $(m=2,4,6...)$



$(pq(C+Cp+cdots+Cp^{n}))'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+pq(Capq+cdots+nCp^{n-1}apq)$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+apq^{2}(Cp+cdots+nCp^{n})$
$=apleft{(1-6p)(C+Cp+cdots+Cp^{n})+(1-4p)(Cp+cdots+nCp^{n})right}$
$=apleft{(1-6p)C+(2-10p)Cp+cdots+((n+1)-2(2n+3)p)Cp^{n}right}$
$=apleft{C+(-4)Cp+cdots+(-(3n+1))Cp^{n}+(-2(2n+3))Cp^{n+1}right}$
$=ap(C+Cp+cdots+Cp^{n+1})$ $----(2)$



$(1)->(2)->(1)->(2)->.........$



$x^{(m)}=?$



enter image description here
Postscript



$frac{d^m x}{dt^m}=a^m P_m(x)$



$b=x(1-x)$
$b'=(1-2x)$
$b''=-2$
$b'''=0$



$x'=ab$
$x''=a^{2}b(b')$
$x^{(3)}=a^{3}b((b')^2+b(b')^0b'')$
$x^{(4)}=a^{4}b((b')^3+4b(b')^1b'')$
$x^{(5)}=a^{5}b((b')^4+11b(b')^2b''+4b^2(b')^0(b'')^2)$
$x^{(6)}=a^{6}b((b')^5+26b(b')^3b''+34b^2(b')^1(b'')^2)$
$x^{(7)}=a^{7}b((b')^6+57b(b')^4b''+180b^2(b')^2(b'')^2+34b^3(b')^0(b'')^3)$



$$x^{(m)}=a^{m}bBiggl((b')^{m-1} + left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}b(b')^{m-3}b'' + left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}b^2(b')^{m-5}(b'')^2 + left{sum_{k=6}^{m-1} 4^{k-6}S_{left[2right]{m-k+4}}(m-k)right}b^3(b')^{m-7}(b'')^3 + ...... Biggr)$$



$$S_{left[1right]{m}} = left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}$$
$$S_{left[2right]{m}} = left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
    $endgroup$
    – Hans Engler
    Dec 19 '18 at 14:14










  • $begingroup$
    Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
    $endgroup$
    – user625311
    Dec 20 '18 at 15:30












  • $begingroup$
    Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
    $endgroup$
    – J.G.
    Dec 20 '18 at 16:09






  • 1




    $begingroup$
    $frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
    $endgroup$
    – Mariusz Iwaniuk
    Dec 20 '18 at 17:54














5












5








5


1



$begingroup$



Compute the $m$th derivative of the sigmoid function $x(t)=1/(1+e^{-at})$.




I hardly understand English.
I wrote a question using translation.
I want to generalize.



$a$ is a constant



$$x(t) = frac{1}{1+e^{-at}}$$



$x'=left(frac{1}{1+e^{-at}}right)'$
$=((1+e^{-at})^{-1})'$
$=(-(1+e^{-at})^{-2})(-ae^{-at})$
$=frac{ae^{-at}}{(1+e^{-at})^{2}}$
$=frac{a}{1+e^{-at}}frac{e^{-at}+1-1}{1+e^{-at}} $
$=frac{a}{1+e^{-at}}left(1-frac{1}{1+e^{-at}}right)$
$=ax(t)(1-x(t))$



$x''=(ax(1-x))'$
$=a(x'(1-x)+x(1-x)')$
$=aleft{ax(1-x)(1-x)+x(-ax(1-x))right}$
$=a(ax(1-x)^{2}-ax^{2}(1-x))$
$=a^{2}x(1-x)(1-x-x)$
$=a^{2}x(1-x)(1-2x)$



$p=x(1-x),q=(1-2x)$



$p'=ax(1-x)(1-2x)=apq$



$q'=(1-2x)'=-2ax(1-x)=-2ap$



$q^{2} $
$=(1-2x)^{2}$
$=(1-4x+4x^{2})$
$=(1-4x(1-x))$
$=(1-4p)$



$x^{(3)}=(a^{2}pq)'$
$=a^{2}(p'q+pq')$
$=a^{2}(apqq+p(-2ap))$
$=a^{2}(apq^{2}-2ap^{2})$
$=a^{2}(ap(1-4p)+p(-2ap))$
$=a^{3}p((1-4p)+(-2p))$
$=a^{3}p(1-6p)$



$x'=ap$



$x''=a^{2}pq$



$x^{(3)}=a^{3}p(1-6p)$
$x^{(4)}=a^{4}pq(1-12p)$
$x^{(5)}=a^{5}p(1-30p+120p^{2})$
$x^{(6)}=a^{6}pq(1-60p+360p^{2})$
$x^{(7)}=a^{7}p(1-126p+1680p^{2}-5040p^{3})$
$x^{(8)}=a^{8}pq(1-252p+5040p^{2}-20160p^{3})$



C are constant
$n = 0,1,2,3....$



$x^{(m)}$ $(m=1,3,5...)$



$(p(C+Cp+cdots+Cp^{n}))'$
$=p'(C+Cp+cdots+Cp^{n})+p(C+Cp+cdots+Cp^{n})'$
$=apq(C+Cp+cdots+Cp^{n})+p(Capq+cdots+nCp^{n-1}apq)$
$=qpq(C+Cp+cdots+Cp^{n})+apq(Cp+cdots+nCp^{n})$
$=apq(C+2Cp+cdots+(n+1)Cp^{n})$
$=apq(C+Cp+cdots+Cp^{n})$ $----(1)$



$x^{(m)}$ $(m=2,4,6...)$



$(pq(C+Cp+cdots+Cp^{n}))'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+pq(Capq+cdots+nCp^{n-1}apq)$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+apq^{2}(Cp+cdots+nCp^{n})$
$=apleft{(1-6p)(C+Cp+cdots+Cp^{n})+(1-4p)(Cp+cdots+nCp^{n})right}$
$=apleft{(1-6p)C+(2-10p)Cp+cdots+((n+1)-2(2n+3)p)Cp^{n}right}$
$=apleft{C+(-4)Cp+cdots+(-(3n+1))Cp^{n}+(-2(2n+3))Cp^{n+1}right}$
$=ap(C+Cp+cdots+Cp^{n+1})$ $----(2)$



$(1)->(2)->(1)->(2)->.........$



$x^{(m)}=?$



enter image description here
Postscript



$frac{d^m x}{dt^m}=a^m P_m(x)$



$b=x(1-x)$
$b'=(1-2x)$
$b''=-2$
$b'''=0$



$x'=ab$
$x''=a^{2}b(b')$
$x^{(3)}=a^{3}b((b')^2+b(b')^0b'')$
$x^{(4)}=a^{4}b((b')^3+4b(b')^1b'')$
$x^{(5)}=a^{5}b((b')^4+11b(b')^2b''+4b^2(b')^0(b'')^2)$
$x^{(6)}=a^{6}b((b')^5+26b(b')^3b''+34b^2(b')^1(b'')^2)$
$x^{(7)}=a^{7}b((b')^6+57b(b')^4b''+180b^2(b')^2(b'')^2+34b^3(b')^0(b'')^3)$



$$x^{(m)}=a^{m}bBiggl((b')^{m-1} + left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}b(b')^{m-3}b'' + left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}b^2(b')^{m-5}(b'')^2 + left{sum_{k=6}^{m-1} 4^{k-6}S_{left[2right]{m-k+4}}(m-k)right}b^3(b')^{m-7}(b'')^3 + ...... Biggr)$$



$$S_{left[1right]{m}} = left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}$$
$$S_{left[2right]{m}} = left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}$$










share|cite|improve this question











$endgroup$





Compute the $m$th derivative of the sigmoid function $x(t)=1/(1+e^{-at})$.




I hardly understand English.
I wrote a question using translation.
I want to generalize.



$a$ is a constant



$$x(t) = frac{1}{1+e^{-at}}$$



$x'=left(frac{1}{1+e^{-at}}right)'$
$=((1+e^{-at})^{-1})'$
$=(-(1+e^{-at})^{-2})(-ae^{-at})$
$=frac{ae^{-at}}{(1+e^{-at})^{2}}$
$=frac{a}{1+e^{-at}}frac{e^{-at}+1-1}{1+e^{-at}} $
$=frac{a}{1+e^{-at}}left(1-frac{1}{1+e^{-at}}right)$
$=ax(t)(1-x(t))$



$x''=(ax(1-x))'$
$=a(x'(1-x)+x(1-x)')$
$=aleft{ax(1-x)(1-x)+x(-ax(1-x))right}$
$=a(ax(1-x)^{2}-ax^{2}(1-x))$
$=a^{2}x(1-x)(1-x-x)$
$=a^{2}x(1-x)(1-2x)$



$p=x(1-x),q=(1-2x)$



$p'=ax(1-x)(1-2x)=apq$



$q'=(1-2x)'=-2ax(1-x)=-2ap$



$q^{2} $
$=(1-2x)^{2}$
$=(1-4x+4x^{2})$
$=(1-4x(1-x))$
$=(1-4p)$



$x^{(3)}=(a^{2}pq)'$
$=a^{2}(p'q+pq')$
$=a^{2}(apqq+p(-2ap))$
$=a^{2}(apq^{2}-2ap^{2})$
$=a^{2}(ap(1-4p)+p(-2ap))$
$=a^{3}p((1-4p)+(-2p))$
$=a^{3}p(1-6p)$



$x'=ap$



$x''=a^{2}pq$



$x^{(3)}=a^{3}p(1-6p)$
$x^{(4)}=a^{4}pq(1-12p)$
$x^{(5)}=a^{5}p(1-30p+120p^{2})$
$x^{(6)}=a^{6}pq(1-60p+360p^{2})$
$x^{(7)}=a^{7}p(1-126p+1680p^{2}-5040p^{3})$
$x^{(8)}=a^{8}pq(1-252p+5040p^{2}-20160p^{3})$



C are constant
$n = 0,1,2,3....$



$x^{(m)}$ $(m=1,3,5...)$



$(p(C+Cp+cdots+Cp^{n}))'$
$=p'(C+Cp+cdots+Cp^{n})+p(C+Cp+cdots+Cp^{n})'$
$=apq(C+Cp+cdots+Cp^{n})+p(Capq+cdots+nCp^{n-1}apq)$
$=qpq(C+Cp+cdots+Cp^{n})+apq(Cp+cdots+nCp^{n})$
$=apq(C+2Cp+cdots+(n+1)Cp^{n})$
$=apq(C+Cp+cdots+Cp^{n})$ $----(1)$



$x^{(m)}$ $(m=2,4,6...)$



$(pq(C+Cp+cdots+Cp^{n}))'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+pq(Capq+cdots+nCp^{n-1}apq)$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+apq^{2}(Cp+cdots+nCp^{n})$
$=apleft{(1-6p)(C+Cp+cdots+Cp^{n})+(1-4p)(Cp+cdots+nCp^{n})right}$
$=apleft{(1-6p)C+(2-10p)Cp+cdots+((n+1)-2(2n+3)p)Cp^{n}right}$
$=apleft{C+(-4)Cp+cdots+(-(3n+1))Cp^{n}+(-2(2n+3))Cp^{n+1}right}$
$=ap(C+Cp+cdots+Cp^{n+1})$ $----(2)$



$(1)->(2)->(1)->(2)->.........$



$x^{(m)}=?$



enter image description here
Postscript



$frac{d^m x}{dt^m}=a^m P_m(x)$



$b=x(1-x)$
$b'=(1-2x)$
$b''=-2$
$b'''=0$



$x'=ab$
$x''=a^{2}b(b')$
$x^{(3)}=a^{3}b((b')^2+b(b')^0b'')$
$x^{(4)}=a^{4}b((b')^3+4b(b')^1b'')$
$x^{(5)}=a^{5}b((b')^4+11b(b')^2b''+4b^2(b')^0(b'')^2)$
$x^{(6)}=a^{6}b((b')^5+26b(b')^3b''+34b^2(b')^1(b'')^2)$
$x^{(7)}=a^{7}b((b')^6+57b(b')^4b''+180b^2(b')^2(b'')^2+34b^3(b')^0(b'')^3)$



$$x^{(m)}=a^{m}bBiggl((b')^{m-1} + left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}b(b')^{m-3}b'' + left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}b^2(b')^{m-5}(b'')^2 + left{sum_{k=6}^{m-1} 4^{k-6}S_{left[2right]{m-k+4}}(m-k)right}b^3(b')^{m-7}(b'')^3 + ...... Biggr)$$



$$S_{left[1right]{m}} = left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}$$
$$S_{left[2right]{m}} = left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}$$







calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 30 '18 at 0:10







user625311

















asked Dec 18 '18 at 12:38









user625311user625311

264




264












  • $begingroup$
    Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
    $endgroup$
    – Hans Engler
    Dec 19 '18 at 14:14










  • $begingroup$
    Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
    $endgroup$
    – user625311
    Dec 20 '18 at 15:30












  • $begingroup$
    Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
    $endgroup$
    – J.G.
    Dec 20 '18 at 16:09






  • 1




    $begingroup$
    $frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
    $endgroup$
    – Mariusz Iwaniuk
    Dec 20 '18 at 17:54


















  • $begingroup$
    Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
    $endgroup$
    – Hans Engler
    Dec 19 '18 at 14:14










  • $begingroup$
    Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
    $endgroup$
    – user625311
    Dec 20 '18 at 15:30












  • $begingroup$
    Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
    $endgroup$
    – J.G.
    Dec 20 '18 at 16:09






  • 1




    $begingroup$
    $frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
    $endgroup$
    – Mariusz Iwaniuk
    Dec 20 '18 at 17:54
















$begingroup$
Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
$endgroup$
– Hans Engler
Dec 19 '18 at 14:14




$begingroup$
Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
$endgroup$
– Hans Engler
Dec 19 '18 at 14:14












$begingroup$
Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
$endgroup$
– user625311
Dec 20 '18 at 15:30






$begingroup$
Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
$endgroup$
– user625311
Dec 20 '18 at 15:30














$begingroup$
Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
$endgroup$
– J.G.
Dec 20 '18 at 16:09




$begingroup$
Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
$endgroup$
– J.G.
Dec 20 '18 at 16:09




1




1




$begingroup$
$frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
$endgroup$
– Mariusz Iwaniuk
Dec 20 '18 at 17:54




$begingroup$
$frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
$endgroup$
– Mariusz Iwaniuk
Dec 20 '18 at 17:54










2 Answers
2






active

oldest

votes


















1












$begingroup$

Applying the higher chain rule (Faà di Bruno's formula) in its form with Partial Exponential Bell Polynomials ($B_{n,k}$), we get:



$$x(t)=frac{1}{1+e^{-at}}$$



$$x(t)=frac{1}{f(t)}; f(t)=1+e^{-at}$$



$$frac{d^n}{dt^n}x(t)=frac{d^n}{dt^n}frac{1}{f(t)}=sum_{k=0}^n(-1)^kk!f(t)^{-(k+1)}B_{n,k}(f(t))$$



$$frac{d^k}{dt^k}f(t)=(1-k)_k+(-a)^ke^{-at}$$



$$B_{n,k}(f(t))=(-1)^nS_{n,k}a^ne^{-kat}$$



$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^n(1+e^{-at})^{-(k+1)}e^{-kat}$$



$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^nx(t)(1-x(t))^k$$



$$x^{(m)}=sum_{k=0}^m(-1)^{m+k}k!S_{m,k}a^mx(1-x)^k$$



$(r)_k$ are the ascending factorials (Pochhammer function), $S_{n,k}$ are the Stirling numbers of the second kind.






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    $$x(t)=1/(1+e^{-at})$$
    $$x(t)=sum_{k=0}^infty (-1)^k e^{-akt}$$
    $$x^{(m)}(t)=sum_{k=0}^infty (-1)^{k} (-ak)^m e^{-akt}$$
    $$x^{(m)}(t)=(-a)^msum_{k=0}^infty (-1)^{k} k^m e^{-akt}$$
    This cannot be expressed in terms of a finite number of elementary functions. A closed form requiers a special function, that is the Lerch function or a Polylogarithm function :
    $$x^{(m)}(t)=(-a)^m Phileft(-e^{-at}:,:-m:,:0 right)$$
    $$x^{(m)}(t)=(-a)^m text{Li}_{-m}left(-e^{-at} right)$$
    This comes directly from the series definition of the Lerch function :
    http://mathworld.wolfram.com/LerchTranscendent.html
    and the series definition of the polylogarithm functions :
    http://mathworld.wolfram.com/Polylogarithm.html






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045118%2fcompute-the-mth-derivative-of-the-sigmoid-function-xt-1-1e-at%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Applying the higher chain rule (Faà di Bruno's formula) in its form with Partial Exponential Bell Polynomials ($B_{n,k}$), we get:



      $$x(t)=frac{1}{1+e^{-at}}$$



      $$x(t)=frac{1}{f(t)}; f(t)=1+e^{-at}$$



      $$frac{d^n}{dt^n}x(t)=frac{d^n}{dt^n}frac{1}{f(t)}=sum_{k=0}^n(-1)^kk!f(t)^{-(k+1)}B_{n,k}(f(t))$$



      $$frac{d^k}{dt^k}f(t)=(1-k)_k+(-a)^ke^{-at}$$



      $$B_{n,k}(f(t))=(-1)^nS_{n,k}a^ne^{-kat}$$



      $$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^n(1+e^{-at})^{-(k+1)}e^{-kat}$$



      $$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^nx(t)(1-x(t))^k$$



      $$x^{(m)}=sum_{k=0}^m(-1)^{m+k}k!S_{m,k}a^mx(1-x)^k$$



      $(r)_k$ are the ascending factorials (Pochhammer function), $S_{n,k}$ are the Stirling numbers of the second kind.






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        Applying the higher chain rule (Faà di Bruno's formula) in its form with Partial Exponential Bell Polynomials ($B_{n,k}$), we get:



        $$x(t)=frac{1}{1+e^{-at}}$$



        $$x(t)=frac{1}{f(t)}; f(t)=1+e^{-at}$$



        $$frac{d^n}{dt^n}x(t)=frac{d^n}{dt^n}frac{1}{f(t)}=sum_{k=0}^n(-1)^kk!f(t)^{-(k+1)}B_{n,k}(f(t))$$



        $$frac{d^k}{dt^k}f(t)=(1-k)_k+(-a)^ke^{-at}$$



        $$B_{n,k}(f(t))=(-1)^nS_{n,k}a^ne^{-kat}$$



        $$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^n(1+e^{-at})^{-(k+1)}e^{-kat}$$



        $$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^nx(t)(1-x(t))^k$$



        $$x^{(m)}=sum_{k=0}^m(-1)^{m+k}k!S_{m,k}a^mx(1-x)^k$$



        $(r)_k$ are the ascending factorials (Pochhammer function), $S_{n,k}$ are the Stirling numbers of the second kind.






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          Applying the higher chain rule (Faà di Bruno's formula) in its form with Partial Exponential Bell Polynomials ($B_{n,k}$), we get:



          $$x(t)=frac{1}{1+e^{-at}}$$



          $$x(t)=frac{1}{f(t)}; f(t)=1+e^{-at}$$



          $$frac{d^n}{dt^n}x(t)=frac{d^n}{dt^n}frac{1}{f(t)}=sum_{k=0}^n(-1)^kk!f(t)^{-(k+1)}B_{n,k}(f(t))$$



          $$frac{d^k}{dt^k}f(t)=(1-k)_k+(-a)^ke^{-at}$$



          $$B_{n,k}(f(t))=(-1)^nS_{n,k}a^ne^{-kat}$$



          $$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^n(1+e^{-at})^{-(k+1)}e^{-kat}$$



          $$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^nx(t)(1-x(t))^k$$



          $$x^{(m)}=sum_{k=0}^m(-1)^{m+k}k!S_{m,k}a^mx(1-x)^k$$



          $(r)_k$ are the ascending factorials (Pochhammer function), $S_{n,k}$ are the Stirling numbers of the second kind.






          share|cite|improve this answer











          $endgroup$



          Applying the higher chain rule (Faà di Bruno's formula) in its form with Partial Exponential Bell Polynomials ($B_{n,k}$), we get:



          $$x(t)=frac{1}{1+e^{-at}}$$



          $$x(t)=frac{1}{f(t)}; f(t)=1+e^{-at}$$



          $$frac{d^n}{dt^n}x(t)=frac{d^n}{dt^n}frac{1}{f(t)}=sum_{k=0}^n(-1)^kk!f(t)^{-(k+1)}B_{n,k}(f(t))$$



          $$frac{d^k}{dt^k}f(t)=(1-k)_k+(-a)^ke^{-at}$$



          $$B_{n,k}(f(t))=(-1)^nS_{n,k}a^ne^{-kat}$$



          $$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^n(1+e^{-at})^{-(k+1)}e^{-kat}$$



          $$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^nx(t)(1-x(t))^k$$



          $$x^{(m)}=sum_{k=0}^m(-1)^{m+k}k!S_{m,k}a^mx(1-x)^k$$



          $(r)_k$ are the ascending factorials (Pochhammer function), $S_{n,k}$ are the Stirling numbers of the second kind.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 27 '18 at 12:47

























          answered Dec 26 '18 at 17:41









          IV_IV_

          1,556525




          1,556525























              0












              $begingroup$

              $$x(t)=1/(1+e^{-at})$$
              $$x(t)=sum_{k=0}^infty (-1)^k e^{-akt}$$
              $$x^{(m)}(t)=sum_{k=0}^infty (-1)^{k} (-ak)^m e^{-akt}$$
              $$x^{(m)}(t)=(-a)^msum_{k=0}^infty (-1)^{k} k^m e^{-akt}$$
              This cannot be expressed in terms of a finite number of elementary functions. A closed form requiers a special function, that is the Lerch function or a Polylogarithm function :
              $$x^{(m)}(t)=(-a)^m Phileft(-e^{-at}:,:-m:,:0 right)$$
              $$x^{(m)}(t)=(-a)^m text{Li}_{-m}left(-e^{-at} right)$$
              This comes directly from the series definition of the Lerch function :
              http://mathworld.wolfram.com/LerchTranscendent.html
              and the series definition of the polylogarithm functions :
              http://mathworld.wolfram.com/Polylogarithm.html






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $$x(t)=1/(1+e^{-at})$$
                $$x(t)=sum_{k=0}^infty (-1)^k e^{-akt}$$
                $$x^{(m)}(t)=sum_{k=0}^infty (-1)^{k} (-ak)^m e^{-akt}$$
                $$x^{(m)}(t)=(-a)^msum_{k=0}^infty (-1)^{k} k^m e^{-akt}$$
                This cannot be expressed in terms of a finite number of elementary functions. A closed form requiers a special function, that is the Lerch function or a Polylogarithm function :
                $$x^{(m)}(t)=(-a)^m Phileft(-e^{-at}:,:-m:,:0 right)$$
                $$x^{(m)}(t)=(-a)^m text{Li}_{-m}left(-e^{-at} right)$$
                This comes directly from the series definition of the Lerch function :
                http://mathworld.wolfram.com/LerchTranscendent.html
                and the series definition of the polylogarithm functions :
                http://mathworld.wolfram.com/Polylogarithm.html






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $$x(t)=1/(1+e^{-at})$$
                  $$x(t)=sum_{k=0}^infty (-1)^k e^{-akt}$$
                  $$x^{(m)}(t)=sum_{k=0}^infty (-1)^{k} (-ak)^m e^{-akt}$$
                  $$x^{(m)}(t)=(-a)^msum_{k=0}^infty (-1)^{k} k^m e^{-akt}$$
                  This cannot be expressed in terms of a finite number of elementary functions. A closed form requiers a special function, that is the Lerch function or a Polylogarithm function :
                  $$x^{(m)}(t)=(-a)^m Phileft(-e^{-at}:,:-m:,:0 right)$$
                  $$x^{(m)}(t)=(-a)^m text{Li}_{-m}left(-e^{-at} right)$$
                  This comes directly from the series definition of the Lerch function :
                  http://mathworld.wolfram.com/LerchTranscendent.html
                  and the series definition of the polylogarithm functions :
                  http://mathworld.wolfram.com/Polylogarithm.html






                  share|cite|improve this answer









                  $endgroup$



                  $$x(t)=1/(1+e^{-at})$$
                  $$x(t)=sum_{k=0}^infty (-1)^k e^{-akt}$$
                  $$x^{(m)}(t)=sum_{k=0}^infty (-1)^{k} (-ak)^m e^{-akt}$$
                  $$x^{(m)}(t)=(-a)^msum_{k=0}^infty (-1)^{k} k^m e^{-akt}$$
                  This cannot be expressed in terms of a finite number of elementary functions. A closed form requiers a special function, that is the Lerch function or a Polylogarithm function :
                  $$x^{(m)}(t)=(-a)^m Phileft(-e^{-at}:,:-m:,:0 right)$$
                  $$x^{(m)}(t)=(-a)^m text{Li}_{-m}left(-e^{-at} right)$$
                  This comes directly from the series definition of the Lerch function :
                  http://mathworld.wolfram.com/LerchTranscendent.html
                  and the series definition of the polylogarithm functions :
                  http://mathworld.wolfram.com/Polylogarithm.html







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 27 '18 at 15:15









                  JJacquelinJJacquelin

                  45.2k21856




                  45.2k21856






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045118%2fcompute-the-mth-derivative-of-the-sigmoid-function-xt-1-1e-at%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Plaza Victoria

                      Puebla de Zaragoza

                      Musa