Compute the $m$th derivative of the sigmoid function $x(t)=1/(1+e^{-at})$
$begingroup$
Compute the $m$th derivative of the sigmoid function $x(t)=1/(1+e^{-at})$.
I hardly understand English.
I wrote a question using translation.
I want to generalize.
$a$ is a constant
$$x(t) = frac{1}{1+e^{-at}}$$
$x'=left(frac{1}{1+e^{-at}}right)'$
$=((1+e^{-at})^{-1})'$
$=(-(1+e^{-at})^{-2})(-ae^{-at})$
$=frac{ae^{-at}}{(1+e^{-at})^{2}}$
$=frac{a}{1+e^{-at}}frac{e^{-at}+1-1}{1+e^{-at}} $
$=frac{a}{1+e^{-at}}left(1-frac{1}{1+e^{-at}}right)$
$=ax(t)(1-x(t))$
$x''=(ax(1-x))'$
$=a(x'(1-x)+x(1-x)')$
$=aleft{ax(1-x)(1-x)+x(-ax(1-x))right}$
$=a(ax(1-x)^{2}-ax^{2}(1-x))$
$=a^{2}x(1-x)(1-x-x)$
$=a^{2}x(1-x)(1-2x)$
$p=x(1-x),q=(1-2x)$
$p'=ax(1-x)(1-2x)=apq$
$q'=(1-2x)'=-2ax(1-x)=-2ap$
$q^{2} $
$=(1-2x)^{2}$
$=(1-4x+4x^{2})$
$=(1-4x(1-x))$
$=(1-4p)$
$x^{(3)}=(a^{2}pq)'$
$=a^{2}(p'q+pq')$
$=a^{2}(apqq+p(-2ap))$
$=a^{2}(apq^{2}-2ap^{2})$
$=a^{2}(ap(1-4p)+p(-2ap))$
$=a^{3}p((1-4p)+(-2p))$
$=a^{3}p(1-6p)$
$x'=ap$
$x''=a^{2}pq$
$x^{(3)}=a^{3}p(1-6p)$
$x^{(4)}=a^{4}pq(1-12p)$
$x^{(5)}=a^{5}p(1-30p+120p^{2})$
$x^{(6)}=a^{6}pq(1-60p+360p^{2})$
$x^{(7)}=a^{7}p(1-126p+1680p^{2}-5040p^{3})$
$x^{(8)}=a^{8}pq(1-252p+5040p^{2}-20160p^{3})$
C are constant
$n = 0,1,2,3....$
$x^{(m)}$ $(m=1,3,5...)$
$(p(C+Cp+cdots+Cp^{n}))'$
$=p'(C+Cp+cdots+Cp^{n})+p(C+Cp+cdots+Cp^{n})'$
$=apq(C+Cp+cdots+Cp^{n})+p(Capq+cdots+nCp^{n-1}apq)$
$=qpq(C+Cp+cdots+Cp^{n})+apq(Cp+cdots+nCp^{n})$
$=apq(C+2Cp+cdots+(n+1)Cp^{n})$
$=apq(C+Cp+cdots+Cp^{n})$ $----(1)$
$x^{(m)}$ $(m=2,4,6...)$
$(pq(C+Cp+cdots+Cp^{n}))'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+pq(Capq+cdots+nCp^{n-1}apq)$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+apq^{2}(Cp+cdots+nCp^{n})$
$=apleft{(1-6p)(C+Cp+cdots+Cp^{n})+(1-4p)(Cp+cdots+nCp^{n})right}$
$=apleft{(1-6p)C+(2-10p)Cp+cdots+((n+1)-2(2n+3)p)Cp^{n}right}$
$=apleft{C+(-4)Cp+cdots+(-(3n+1))Cp^{n}+(-2(2n+3))Cp^{n+1}right}$
$=ap(C+Cp+cdots+Cp^{n+1})$ $----(2)$
$(1)->(2)->(1)->(2)->.........$
$x^{(m)}=?$
Postscript
$frac{d^m x}{dt^m}=a^m P_m(x)$
$b=x(1-x)$
$b'=(1-2x)$
$b''=-2$
$b'''=0$
$x'=ab$
$x''=a^{2}b(b')$
$x^{(3)}=a^{3}b((b')^2+b(b')^0b'')$
$x^{(4)}=a^{4}b((b')^3+4b(b')^1b'')$
$x^{(5)}=a^{5}b((b')^4+11b(b')^2b''+4b^2(b')^0(b'')^2)$
$x^{(6)}=a^{6}b((b')^5+26b(b')^3b''+34b^2(b')^1(b'')^2)$
$x^{(7)}=a^{7}b((b')^6+57b(b')^4b''+180b^2(b')^2(b'')^2+34b^3(b')^0(b'')^3)$
$$x^{(m)}=a^{m}bBiggl((b')^{m-1} + left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}b(b')^{m-3}b'' + left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}b^2(b')^{m-5}(b'')^2 + left{sum_{k=6}^{m-1} 4^{k-6}S_{left[2right]{m-k+4}}(m-k)right}b^3(b')^{m-7}(b'')^3 + ...... Biggr)$$
$$S_{left[1right]{m}} = left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}$$
$$S_{left[2right]{m}} = left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}$$
calculus
$endgroup$
add a comment |
$begingroup$
Compute the $m$th derivative of the sigmoid function $x(t)=1/(1+e^{-at})$.
I hardly understand English.
I wrote a question using translation.
I want to generalize.
$a$ is a constant
$$x(t) = frac{1}{1+e^{-at}}$$
$x'=left(frac{1}{1+e^{-at}}right)'$
$=((1+e^{-at})^{-1})'$
$=(-(1+e^{-at})^{-2})(-ae^{-at})$
$=frac{ae^{-at}}{(1+e^{-at})^{2}}$
$=frac{a}{1+e^{-at}}frac{e^{-at}+1-1}{1+e^{-at}} $
$=frac{a}{1+e^{-at}}left(1-frac{1}{1+e^{-at}}right)$
$=ax(t)(1-x(t))$
$x''=(ax(1-x))'$
$=a(x'(1-x)+x(1-x)')$
$=aleft{ax(1-x)(1-x)+x(-ax(1-x))right}$
$=a(ax(1-x)^{2}-ax^{2}(1-x))$
$=a^{2}x(1-x)(1-x-x)$
$=a^{2}x(1-x)(1-2x)$
$p=x(1-x),q=(1-2x)$
$p'=ax(1-x)(1-2x)=apq$
$q'=(1-2x)'=-2ax(1-x)=-2ap$
$q^{2} $
$=(1-2x)^{2}$
$=(1-4x+4x^{2})$
$=(1-4x(1-x))$
$=(1-4p)$
$x^{(3)}=(a^{2}pq)'$
$=a^{2}(p'q+pq')$
$=a^{2}(apqq+p(-2ap))$
$=a^{2}(apq^{2}-2ap^{2})$
$=a^{2}(ap(1-4p)+p(-2ap))$
$=a^{3}p((1-4p)+(-2p))$
$=a^{3}p(1-6p)$
$x'=ap$
$x''=a^{2}pq$
$x^{(3)}=a^{3}p(1-6p)$
$x^{(4)}=a^{4}pq(1-12p)$
$x^{(5)}=a^{5}p(1-30p+120p^{2})$
$x^{(6)}=a^{6}pq(1-60p+360p^{2})$
$x^{(7)}=a^{7}p(1-126p+1680p^{2}-5040p^{3})$
$x^{(8)}=a^{8}pq(1-252p+5040p^{2}-20160p^{3})$
C are constant
$n = 0,1,2,3....$
$x^{(m)}$ $(m=1,3,5...)$
$(p(C+Cp+cdots+Cp^{n}))'$
$=p'(C+Cp+cdots+Cp^{n})+p(C+Cp+cdots+Cp^{n})'$
$=apq(C+Cp+cdots+Cp^{n})+p(Capq+cdots+nCp^{n-1}apq)$
$=qpq(C+Cp+cdots+Cp^{n})+apq(Cp+cdots+nCp^{n})$
$=apq(C+2Cp+cdots+(n+1)Cp^{n})$
$=apq(C+Cp+cdots+Cp^{n})$ $----(1)$
$x^{(m)}$ $(m=2,4,6...)$
$(pq(C+Cp+cdots+Cp^{n}))'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+pq(Capq+cdots+nCp^{n-1}apq)$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+apq^{2}(Cp+cdots+nCp^{n})$
$=apleft{(1-6p)(C+Cp+cdots+Cp^{n})+(1-4p)(Cp+cdots+nCp^{n})right}$
$=apleft{(1-6p)C+(2-10p)Cp+cdots+((n+1)-2(2n+3)p)Cp^{n}right}$
$=apleft{C+(-4)Cp+cdots+(-(3n+1))Cp^{n}+(-2(2n+3))Cp^{n+1}right}$
$=ap(C+Cp+cdots+Cp^{n+1})$ $----(2)$
$(1)->(2)->(1)->(2)->.........$
$x^{(m)}=?$
Postscript
$frac{d^m x}{dt^m}=a^m P_m(x)$
$b=x(1-x)$
$b'=(1-2x)$
$b''=-2$
$b'''=0$
$x'=ab$
$x''=a^{2}b(b')$
$x^{(3)}=a^{3}b((b')^2+b(b')^0b'')$
$x^{(4)}=a^{4}b((b')^3+4b(b')^1b'')$
$x^{(5)}=a^{5}b((b')^4+11b(b')^2b''+4b^2(b')^0(b'')^2)$
$x^{(6)}=a^{6}b((b')^5+26b(b')^3b''+34b^2(b')^1(b'')^2)$
$x^{(7)}=a^{7}b((b')^6+57b(b')^4b''+180b^2(b')^2(b'')^2+34b^3(b')^0(b'')^3)$
$$x^{(m)}=a^{m}bBiggl((b')^{m-1} + left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}b(b')^{m-3}b'' + left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}b^2(b')^{m-5}(b'')^2 + left{sum_{k=6}^{m-1} 4^{k-6}S_{left[2right]{m-k+4}}(m-k)right}b^3(b')^{m-7}(b'')^3 + ...... Biggr)$$
$$S_{left[1right]{m}} = left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}$$
$$S_{left[2right]{m}} = left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}$$
calculus
$endgroup$
$begingroup$
Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
$endgroup$
– Hans Engler
Dec 19 '18 at 14:14
$begingroup$
Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
$endgroup$
– user625311
Dec 20 '18 at 15:30
$begingroup$
Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
$endgroup$
– J.G.
Dec 20 '18 at 16:09
1
$begingroup$
$frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
$endgroup$
– Mariusz Iwaniuk
Dec 20 '18 at 17:54
add a comment |
$begingroup$
Compute the $m$th derivative of the sigmoid function $x(t)=1/(1+e^{-at})$.
I hardly understand English.
I wrote a question using translation.
I want to generalize.
$a$ is a constant
$$x(t) = frac{1}{1+e^{-at}}$$
$x'=left(frac{1}{1+e^{-at}}right)'$
$=((1+e^{-at})^{-1})'$
$=(-(1+e^{-at})^{-2})(-ae^{-at})$
$=frac{ae^{-at}}{(1+e^{-at})^{2}}$
$=frac{a}{1+e^{-at}}frac{e^{-at}+1-1}{1+e^{-at}} $
$=frac{a}{1+e^{-at}}left(1-frac{1}{1+e^{-at}}right)$
$=ax(t)(1-x(t))$
$x''=(ax(1-x))'$
$=a(x'(1-x)+x(1-x)')$
$=aleft{ax(1-x)(1-x)+x(-ax(1-x))right}$
$=a(ax(1-x)^{2}-ax^{2}(1-x))$
$=a^{2}x(1-x)(1-x-x)$
$=a^{2}x(1-x)(1-2x)$
$p=x(1-x),q=(1-2x)$
$p'=ax(1-x)(1-2x)=apq$
$q'=(1-2x)'=-2ax(1-x)=-2ap$
$q^{2} $
$=(1-2x)^{2}$
$=(1-4x+4x^{2})$
$=(1-4x(1-x))$
$=(1-4p)$
$x^{(3)}=(a^{2}pq)'$
$=a^{2}(p'q+pq')$
$=a^{2}(apqq+p(-2ap))$
$=a^{2}(apq^{2}-2ap^{2})$
$=a^{2}(ap(1-4p)+p(-2ap))$
$=a^{3}p((1-4p)+(-2p))$
$=a^{3}p(1-6p)$
$x'=ap$
$x''=a^{2}pq$
$x^{(3)}=a^{3}p(1-6p)$
$x^{(4)}=a^{4}pq(1-12p)$
$x^{(5)}=a^{5}p(1-30p+120p^{2})$
$x^{(6)}=a^{6}pq(1-60p+360p^{2})$
$x^{(7)}=a^{7}p(1-126p+1680p^{2}-5040p^{3})$
$x^{(8)}=a^{8}pq(1-252p+5040p^{2}-20160p^{3})$
C are constant
$n = 0,1,2,3....$
$x^{(m)}$ $(m=1,3,5...)$
$(p(C+Cp+cdots+Cp^{n}))'$
$=p'(C+Cp+cdots+Cp^{n})+p(C+Cp+cdots+Cp^{n})'$
$=apq(C+Cp+cdots+Cp^{n})+p(Capq+cdots+nCp^{n-1}apq)$
$=qpq(C+Cp+cdots+Cp^{n})+apq(Cp+cdots+nCp^{n})$
$=apq(C+2Cp+cdots+(n+1)Cp^{n})$
$=apq(C+Cp+cdots+Cp^{n})$ $----(1)$
$x^{(m)}$ $(m=2,4,6...)$
$(pq(C+Cp+cdots+Cp^{n}))'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+pq(Capq+cdots+nCp^{n-1}apq)$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+apq^{2}(Cp+cdots+nCp^{n})$
$=apleft{(1-6p)(C+Cp+cdots+Cp^{n})+(1-4p)(Cp+cdots+nCp^{n})right}$
$=apleft{(1-6p)C+(2-10p)Cp+cdots+((n+1)-2(2n+3)p)Cp^{n}right}$
$=apleft{C+(-4)Cp+cdots+(-(3n+1))Cp^{n}+(-2(2n+3))Cp^{n+1}right}$
$=ap(C+Cp+cdots+Cp^{n+1})$ $----(2)$
$(1)->(2)->(1)->(2)->.........$
$x^{(m)}=?$
Postscript
$frac{d^m x}{dt^m}=a^m P_m(x)$
$b=x(1-x)$
$b'=(1-2x)$
$b''=-2$
$b'''=0$
$x'=ab$
$x''=a^{2}b(b')$
$x^{(3)}=a^{3}b((b')^2+b(b')^0b'')$
$x^{(4)}=a^{4}b((b')^3+4b(b')^1b'')$
$x^{(5)}=a^{5}b((b')^4+11b(b')^2b''+4b^2(b')^0(b'')^2)$
$x^{(6)}=a^{6}b((b')^5+26b(b')^3b''+34b^2(b')^1(b'')^2)$
$x^{(7)}=a^{7}b((b')^6+57b(b')^4b''+180b^2(b')^2(b'')^2+34b^3(b')^0(b'')^3)$
$$x^{(m)}=a^{m}bBiggl((b')^{m-1} + left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}b(b')^{m-3}b'' + left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}b^2(b')^{m-5}(b'')^2 + left{sum_{k=6}^{m-1} 4^{k-6}S_{left[2right]{m-k+4}}(m-k)right}b^3(b')^{m-7}(b'')^3 + ...... Biggr)$$
$$S_{left[1right]{m}} = left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}$$
$$S_{left[2right]{m}} = left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}$$
calculus
$endgroup$
Compute the $m$th derivative of the sigmoid function $x(t)=1/(1+e^{-at})$.
I hardly understand English.
I wrote a question using translation.
I want to generalize.
$a$ is a constant
$$x(t) = frac{1}{1+e^{-at}}$$
$x'=left(frac{1}{1+e^{-at}}right)'$
$=((1+e^{-at})^{-1})'$
$=(-(1+e^{-at})^{-2})(-ae^{-at})$
$=frac{ae^{-at}}{(1+e^{-at})^{2}}$
$=frac{a}{1+e^{-at}}frac{e^{-at}+1-1}{1+e^{-at}} $
$=frac{a}{1+e^{-at}}left(1-frac{1}{1+e^{-at}}right)$
$=ax(t)(1-x(t))$
$x''=(ax(1-x))'$
$=a(x'(1-x)+x(1-x)')$
$=aleft{ax(1-x)(1-x)+x(-ax(1-x))right}$
$=a(ax(1-x)^{2}-ax^{2}(1-x))$
$=a^{2}x(1-x)(1-x-x)$
$=a^{2}x(1-x)(1-2x)$
$p=x(1-x),q=(1-2x)$
$p'=ax(1-x)(1-2x)=apq$
$q'=(1-2x)'=-2ax(1-x)=-2ap$
$q^{2} $
$=(1-2x)^{2}$
$=(1-4x+4x^{2})$
$=(1-4x(1-x))$
$=(1-4p)$
$x^{(3)}=(a^{2}pq)'$
$=a^{2}(p'q+pq')$
$=a^{2}(apqq+p(-2ap))$
$=a^{2}(apq^{2}-2ap^{2})$
$=a^{2}(ap(1-4p)+p(-2ap))$
$=a^{3}p((1-4p)+(-2p))$
$=a^{3}p(1-6p)$
$x'=ap$
$x''=a^{2}pq$
$x^{(3)}=a^{3}p(1-6p)$
$x^{(4)}=a^{4}pq(1-12p)$
$x^{(5)}=a^{5}p(1-30p+120p^{2})$
$x^{(6)}=a^{6}pq(1-60p+360p^{2})$
$x^{(7)}=a^{7}p(1-126p+1680p^{2}-5040p^{3})$
$x^{(8)}=a^{8}pq(1-252p+5040p^{2}-20160p^{3})$
C are constant
$n = 0,1,2,3....$
$x^{(m)}$ $(m=1,3,5...)$
$(p(C+Cp+cdots+Cp^{n}))'$
$=p'(C+Cp+cdots+Cp^{n})+p(C+Cp+cdots+Cp^{n})'$
$=apq(C+Cp+cdots+Cp^{n})+p(Capq+cdots+nCp^{n-1}apq)$
$=qpq(C+Cp+cdots+Cp^{n})+apq(Cp+cdots+nCp^{n})$
$=apq(C+2Cp+cdots+(n+1)Cp^{n})$
$=apq(C+Cp+cdots+Cp^{n})$ $----(1)$
$x^{(m)}$ $(m=2,4,6...)$
$(pq(C+Cp+cdots+Cp^{n}))'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=(pq)'(C+Cp+cdots+Cp^{n})+pq(C+Cp+cdots+Cp^{n})'$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+pq(Capq+cdots+nCp^{n-1}apq)$
$=ap(1-6p)(C+Cp+cdots+Cp^{n})+apq^{2}(Cp+cdots+nCp^{n})$
$=apleft{(1-6p)(C+Cp+cdots+Cp^{n})+(1-4p)(Cp+cdots+nCp^{n})right}$
$=apleft{(1-6p)C+(2-10p)Cp+cdots+((n+1)-2(2n+3)p)Cp^{n}right}$
$=apleft{C+(-4)Cp+cdots+(-(3n+1))Cp^{n}+(-2(2n+3))Cp^{n+1}right}$
$=ap(C+Cp+cdots+Cp^{n+1})$ $----(2)$
$(1)->(2)->(1)->(2)->.........$
$x^{(m)}=?$
Postscript
$frac{d^m x}{dt^m}=a^m P_m(x)$
$b=x(1-x)$
$b'=(1-2x)$
$b''=-2$
$b'''=0$
$x'=ab$
$x''=a^{2}b(b')$
$x^{(3)}=a^{3}b((b')^2+b(b')^0b'')$
$x^{(4)}=a^{4}b((b')^3+4b(b')^1b'')$
$x^{(5)}=a^{5}b((b')^4+11b(b')^2b''+4b^2(b')^0(b'')^2)$
$x^{(6)}=a^{6}b((b')^5+26b(b')^3b''+34b^2(b')^1(b'')^2)$
$x^{(7)}=a^{7}b((b')^6+57b(b')^4b''+180b^2(b')^2(b'')^2+34b^3(b')^0(b'')^3)$
$$x^{(m)}=a^{m}bBiggl((b')^{m-1} + left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}b(b')^{m-3}b'' + left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}b^2(b')^{m-5}(b'')^2 + left{sum_{k=6}^{m-1} 4^{k-6}S_{left[2right]{m-k+4}}(m-k)right}b^3(b')^{m-7}(b'')^3 + ...... Biggr)$$
$$S_{left[1right]{m}} = left{sum_{k=2}^{m-1} 2^{k-2}(m-k) right}$$
$$S_{left[2right]{m}} = left{sum_{k=4}^{m-1} 3^{k-4}S_{left[1right]{m-k+2}}(m-k) right}$$
calculus
calculus
edited Dec 30 '18 at 0:10
user625311
asked Dec 18 '18 at 12:38
user625311user625311
264
264
$begingroup$
Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
$endgroup$
– Hans Engler
Dec 19 '18 at 14:14
$begingroup$
Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
$endgroup$
– user625311
Dec 20 '18 at 15:30
$begingroup$
Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
$endgroup$
– J.G.
Dec 20 '18 at 16:09
1
$begingroup$
$frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
$endgroup$
– Mariusz Iwaniuk
Dec 20 '18 at 17:54
add a comment |
$begingroup$
Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
$endgroup$
– Hans Engler
Dec 19 '18 at 14:14
$begingroup$
Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
$endgroup$
– user625311
Dec 20 '18 at 15:30
$begingroup$
Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
$endgroup$
– J.G.
Dec 20 '18 at 16:09
1
$begingroup$
$frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
$endgroup$
– Mariusz Iwaniuk
Dec 20 '18 at 17:54
$begingroup$
Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
$endgroup$
– Hans Engler
Dec 19 '18 at 14:14
$begingroup$
Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
$endgroup$
– Hans Engler
Dec 19 '18 at 14:14
$begingroup$
Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
$endgroup$
– user625311
Dec 20 '18 at 15:30
$begingroup$
Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
$endgroup$
– user625311
Dec 20 '18 at 15:30
$begingroup$
Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
$endgroup$
– J.G.
Dec 20 '18 at 16:09
$begingroup$
Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
$endgroup$
– J.G.
Dec 20 '18 at 16:09
1
1
$begingroup$
$frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
$endgroup$
– Mariusz Iwaniuk
Dec 20 '18 at 17:54
$begingroup$
$frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
$endgroup$
– Mariusz Iwaniuk
Dec 20 '18 at 17:54
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Applying the higher chain rule (Faà di Bruno's formula) in its form with Partial Exponential Bell Polynomials ($B_{n,k}$), we get:
$$x(t)=frac{1}{1+e^{-at}}$$
$$x(t)=frac{1}{f(t)}; f(t)=1+e^{-at}$$
$$frac{d^n}{dt^n}x(t)=frac{d^n}{dt^n}frac{1}{f(t)}=sum_{k=0}^n(-1)^kk!f(t)^{-(k+1)}B_{n,k}(f(t))$$
$$frac{d^k}{dt^k}f(t)=(1-k)_k+(-a)^ke^{-at}$$
$$B_{n,k}(f(t))=(-1)^nS_{n,k}a^ne^{-kat}$$
$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^n(1+e^{-at})^{-(k+1)}e^{-kat}$$
$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^nx(t)(1-x(t))^k$$
$$x^{(m)}=sum_{k=0}^m(-1)^{m+k}k!S_{m,k}a^mx(1-x)^k$$
$(r)_k$ are the ascending factorials (Pochhammer function), $S_{n,k}$ are the Stirling numbers of the second kind.
$endgroup$
add a comment |
$begingroup$
$$x(t)=1/(1+e^{-at})$$
$$x(t)=sum_{k=0}^infty (-1)^k e^{-akt}$$
$$x^{(m)}(t)=sum_{k=0}^infty (-1)^{k} (-ak)^m e^{-akt}$$
$$x^{(m)}(t)=(-a)^msum_{k=0}^infty (-1)^{k} k^m e^{-akt}$$
This cannot be expressed in terms of a finite number of elementary functions. A closed form requiers a special function, that is the Lerch function or a Polylogarithm function :
$$x^{(m)}(t)=(-a)^m Phileft(-e^{-at}:,:-m:,:0 right)$$
$$x^{(m)}(t)=(-a)^m text{Li}_{-m}left(-e^{-at} right)$$
This comes directly from the series definition of the Lerch function :
http://mathworld.wolfram.com/LerchTranscendent.html
and the series definition of the polylogarithm functions :
http://mathworld.wolfram.com/Polylogarithm.html
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045118%2fcompute-the-mth-derivative-of-the-sigmoid-function-xt-1-1e-at%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Applying the higher chain rule (Faà di Bruno's formula) in its form with Partial Exponential Bell Polynomials ($B_{n,k}$), we get:
$$x(t)=frac{1}{1+e^{-at}}$$
$$x(t)=frac{1}{f(t)}; f(t)=1+e^{-at}$$
$$frac{d^n}{dt^n}x(t)=frac{d^n}{dt^n}frac{1}{f(t)}=sum_{k=0}^n(-1)^kk!f(t)^{-(k+1)}B_{n,k}(f(t))$$
$$frac{d^k}{dt^k}f(t)=(1-k)_k+(-a)^ke^{-at}$$
$$B_{n,k}(f(t))=(-1)^nS_{n,k}a^ne^{-kat}$$
$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^n(1+e^{-at})^{-(k+1)}e^{-kat}$$
$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^nx(t)(1-x(t))^k$$
$$x^{(m)}=sum_{k=0}^m(-1)^{m+k}k!S_{m,k}a^mx(1-x)^k$$
$(r)_k$ are the ascending factorials (Pochhammer function), $S_{n,k}$ are the Stirling numbers of the second kind.
$endgroup$
add a comment |
$begingroup$
Applying the higher chain rule (Faà di Bruno's formula) in its form with Partial Exponential Bell Polynomials ($B_{n,k}$), we get:
$$x(t)=frac{1}{1+e^{-at}}$$
$$x(t)=frac{1}{f(t)}; f(t)=1+e^{-at}$$
$$frac{d^n}{dt^n}x(t)=frac{d^n}{dt^n}frac{1}{f(t)}=sum_{k=0}^n(-1)^kk!f(t)^{-(k+1)}B_{n,k}(f(t))$$
$$frac{d^k}{dt^k}f(t)=(1-k)_k+(-a)^ke^{-at}$$
$$B_{n,k}(f(t))=(-1)^nS_{n,k}a^ne^{-kat}$$
$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^n(1+e^{-at})^{-(k+1)}e^{-kat}$$
$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^nx(t)(1-x(t))^k$$
$$x^{(m)}=sum_{k=0}^m(-1)^{m+k}k!S_{m,k}a^mx(1-x)^k$$
$(r)_k$ are the ascending factorials (Pochhammer function), $S_{n,k}$ are the Stirling numbers of the second kind.
$endgroup$
add a comment |
$begingroup$
Applying the higher chain rule (Faà di Bruno's formula) in its form with Partial Exponential Bell Polynomials ($B_{n,k}$), we get:
$$x(t)=frac{1}{1+e^{-at}}$$
$$x(t)=frac{1}{f(t)}; f(t)=1+e^{-at}$$
$$frac{d^n}{dt^n}x(t)=frac{d^n}{dt^n}frac{1}{f(t)}=sum_{k=0}^n(-1)^kk!f(t)^{-(k+1)}B_{n,k}(f(t))$$
$$frac{d^k}{dt^k}f(t)=(1-k)_k+(-a)^ke^{-at}$$
$$B_{n,k}(f(t))=(-1)^nS_{n,k}a^ne^{-kat}$$
$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^n(1+e^{-at})^{-(k+1)}e^{-kat}$$
$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^nx(t)(1-x(t))^k$$
$$x^{(m)}=sum_{k=0}^m(-1)^{m+k}k!S_{m,k}a^mx(1-x)^k$$
$(r)_k$ are the ascending factorials (Pochhammer function), $S_{n,k}$ are the Stirling numbers of the second kind.
$endgroup$
Applying the higher chain rule (Faà di Bruno's formula) in its form with Partial Exponential Bell Polynomials ($B_{n,k}$), we get:
$$x(t)=frac{1}{1+e^{-at}}$$
$$x(t)=frac{1}{f(t)}; f(t)=1+e^{-at}$$
$$frac{d^n}{dt^n}x(t)=frac{d^n}{dt^n}frac{1}{f(t)}=sum_{k=0}^n(-1)^kk!f(t)^{-(k+1)}B_{n,k}(f(t))$$
$$frac{d^k}{dt^k}f(t)=(1-k)_k+(-a)^ke^{-at}$$
$$B_{n,k}(f(t))=(-1)^nS_{n,k}a^ne^{-kat}$$
$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^n(1+e^{-at})^{-(k+1)}e^{-kat}$$
$$frac{d^n}{dt^n}x(t)=sum_{k=0}^n(-1)^{n+k}k!S_{n,k}a^nx(t)(1-x(t))^k$$
$$x^{(m)}=sum_{k=0}^m(-1)^{m+k}k!S_{m,k}a^mx(1-x)^k$$
$(r)_k$ are the ascending factorials (Pochhammer function), $S_{n,k}$ are the Stirling numbers of the second kind.
edited Dec 27 '18 at 12:47
answered Dec 26 '18 at 17:41
IV_IV_
1,556525
1,556525
add a comment |
add a comment |
$begingroup$
$$x(t)=1/(1+e^{-at})$$
$$x(t)=sum_{k=0}^infty (-1)^k e^{-akt}$$
$$x^{(m)}(t)=sum_{k=0}^infty (-1)^{k} (-ak)^m e^{-akt}$$
$$x^{(m)}(t)=(-a)^msum_{k=0}^infty (-1)^{k} k^m e^{-akt}$$
This cannot be expressed in terms of a finite number of elementary functions. A closed form requiers a special function, that is the Lerch function or a Polylogarithm function :
$$x^{(m)}(t)=(-a)^m Phileft(-e^{-at}:,:-m:,:0 right)$$
$$x^{(m)}(t)=(-a)^m text{Li}_{-m}left(-e^{-at} right)$$
This comes directly from the series definition of the Lerch function :
http://mathworld.wolfram.com/LerchTranscendent.html
and the series definition of the polylogarithm functions :
http://mathworld.wolfram.com/Polylogarithm.html
$endgroup$
add a comment |
$begingroup$
$$x(t)=1/(1+e^{-at})$$
$$x(t)=sum_{k=0}^infty (-1)^k e^{-akt}$$
$$x^{(m)}(t)=sum_{k=0}^infty (-1)^{k} (-ak)^m e^{-akt}$$
$$x^{(m)}(t)=(-a)^msum_{k=0}^infty (-1)^{k} k^m e^{-akt}$$
This cannot be expressed in terms of a finite number of elementary functions. A closed form requiers a special function, that is the Lerch function or a Polylogarithm function :
$$x^{(m)}(t)=(-a)^m Phileft(-e^{-at}:,:-m:,:0 right)$$
$$x^{(m)}(t)=(-a)^m text{Li}_{-m}left(-e^{-at} right)$$
This comes directly from the series definition of the Lerch function :
http://mathworld.wolfram.com/LerchTranscendent.html
and the series definition of the polylogarithm functions :
http://mathworld.wolfram.com/Polylogarithm.html
$endgroup$
add a comment |
$begingroup$
$$x(t)=1/(1+e^{-at})$$
$$x(t)=sum_{k=0}^infty (-1)^k e^{-akt}$$
$$x^{(m)}(t)=sum_{k=0}^infty (-1)^{k} (-ak)^m e^{-akt}$$
$$x^{(m)}(t)=(-a)^msum_{k=0}^infty (-1)^{k} k^m e^{-akt}$$
This cannot be expressed in terms of a finite number of elementary functions. A closed form requiers a special function, that is the Lerch function or a Polylogarithm function :
$$x^{(m)}(t)=(-a)^m Phileft(-e^{-at}:,:-m:,:0 right)$$
$$x^{(m)}(t)=(-a)^m text{Li}_{-m}left(-e^{-at} right)$$
This comes directly from the series definition of the Lerch function :
http://mathworld.wolfram.com/LerchTranscendent.html
and the series definition of the polylogarithm functions :
http://mathworld.wolfram.com/Polylogarithm.html
$endgroup$
$$x(t)=1/(1+e^{-at})$$
$$x(t)=sum_{k=0}^infty (-1)^k e^{-akt}$$
$$x^{(m)}(t)=sum_{k=0}^infty (-1)^{k} (-ak)^m e^{-akt}$$
$$x^{(m)}(t)=(-a)^msum_{k=0}^infty (-1)^{k} k^m e^{-akt}$$
This cannot be expressed in terms of a finite number of elementary functions. A closed form requiers a special function, that is the Lerch function or a Polylogarithm function :
$$x^{(m)}(t)=(-a)^m Phileft(-e^{-at}:,:-m:,:0 right)$$
$$x^{(m)}(t)=(-a)^m text{Li}_{-m}left(-e^{-at} right)$$
This comes directly from the series definition of the Lerch function :
http://mathworld.wolfram.com/LerchTranscendent.html
and the series definition of the polylogarithm functions :
http://mathworld.wolfram.com/Polylogarithm.html
answered Dec 27 '18 at 15:15
JJacquelinJJacquelin
45.2k21856
45.2k21856
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045118%2fcompute-the-mth-derivative-of-the-sigmoid-function-xt-1-1e-at%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hello and welcome to math.stackexchange. This is an interesting question. Try to answer it first for $a=1$. Since $x' = x(1-x)$, it follows that $x'' = (1-2x)(x - x^2) = x-3x^2+2x^3$ and so on. The guess then is that $x^{(m)} = P_m(x)$ where $P_m$ is a certain polynomial. Now compute the first few $P_m$ and try to see a pattern.
$endgroup$
– Hans Engler
Dec 19 '18 at 14:14
$begingroup$
Thank you for telling me your opinion.Since q does not disappear, I think that $x^{(m)} = P_m(x)$ can not be done. a is a power of n, and even if a = 1, the expression does not change. I think generalization of $ pq(c + cp + ... + cp^{(n)} $ is important. @HansEngler
$endgroup$
– user625311
Dec 20 '18 at 15:30
$begingroup$
Since $frac{d^m}{dt^m}f(at)=a^m f^{(m)}(at)$, polynomials $P_m$ exist with $frac{d^m x}{dt^m}=a^m P_m(x)$ viz. $P_0=x,,P_{m+1}=x(1-x)P_m'$ so $deg P_m=m+1$.
$endgroup$
– J.G.
Dec 20 '18 at 16:09
1
$begingroup$
$frac{partial ^m}{partial t^m}frac{1}{1+exp (-a t)}=(-a)^m Phi left(-e^{-a t},-m,0right)$ where $Phi$ is HurwitzLerchPhi function.
$endgroup$
– Mariusz Iwaniuk
Dec 20 '18 at 17:54