How to create table with 2D function values?
$begingroup$
Consider some function f[x,y]. I want to create a table in the form
table = {{x1,y1,f[x1,y1]},{x1,y2,f[x1,y2]},...,{x2,y1,f[x2,y1]},{x2,y2,f[x2,y2]},...},
where $x_{i},x_{i+1}$ and $y_{i},y_{i+1}$ are separated by some distances $Delta x$, $Delta y$, and i ranges from 1 to some N.
The only way I know is to manually create a table
table=Join[Table[{x1,y,f[x1,y]},{y,y1,yN,Deltay}],Table[{x2,y,f[x2,y]},{y,y1,yN,Deltay}],...]
However, this is not a smart way, especially for large N. Could you please provide some smarter way to build the table?
table
$endgroup$
add a comment |
$begingroup$
Consider some function f[x,y]. I want to create a table in the form
table = {{x1,y1,f[x1,y1]},{x1,y2,f[x1,y2]},...,{x2,y1,f[x2,y1]},{x2,y2,f[x2,y2]},...},
where $x_{i},x_{i+1}$ and $y_{i},y_{i+1}$ are separated by some distances $Delta x$, $Delta y$, and i ranges from 1 to some N.
The only way I know is to manually create a table
table=Join[Table[{x1,y,f[x1,y]},{y,y1,yN,Deltay}],Table[{x2,y,f[x2,y]},{y,y1,yN,Deltay}],...]
However, this is not a smart way, especially for large N. Could you please provide some smarter way to build the table?
table
$endgroup$
1
$begingroup$
Have a look at Menu/Help/WolframDocumentation/Table. That's what will help you.
$endgroup$
– Alexei Boulbitch
Mar 22 at 14:32
add a comment |
$begingroup$
Consider some function f[x,y]. I want to create a table in the form
table = {{x1,y1,f[x1,y1]},{x1,y2,f[x1,y2]},...,{x2,y1,f[x2,y1]},{x2,y2,f[x2,y2]},...},
where $x_{i},x_{i+1}$ and $y_{i},y_{i+1}$ are separated by some distances $Delta x$, $Delta y$, and i ranges from 1 to some N.
The only way I know is to manually create a table
table=Join[Table[{x1,y,f[x1,y]},{y,y1,yN,Deltay}],Table[{x2,y,f[x2,y]},{y,y1,yN,Deltay}],...]
However, this is not a smart way, especially for large N. Could you please provide some smarter way to build the table?
table
$endgroup$
Consider some function f[x,y]. I want to create a table in the form
table = {{x1,y1,f[x1,y1]},{x1,y2,f[x1,y2]},...,{x2,y1,f[x2,y1]},{x2,y2,f[x2,y2]},...},
where $x_{i},x_{i+1}$ and $y_{i},y_{i+1}$ are separated by some distances $Delta x$, $Delta y$, and i ranges from 1 to some N.
The only way I know is to manually create a table
table=Join[Table[{x1,y,f[x1,y]},{y,y1,yN,Deltay}],Table[{x2,y,f[x2,y]},{y,y1,yN,Deltay}],...]
However, this is not a smart way, especially for large N. Could you please provide some smarter way to build the table?
table
table
asked Mar 22 at 14:23
John TaylorJohn Taylor
766211
766211
1
$begingroup$
Have a look at Menu/Help/WolframDocumentation/Table. That's what will help you.
$endgroup$
– Alexei Boulbitch
Mar 22 at 14:32
add a comment |
1
$begingroup$
Have a look at Menu/Help/WolframDocumentation/Table. That's what will help you.
$endgroup$
– Alexei Boulbitch
Mar 22 at 14:32
1
1
$begingroup$
Have a look at Menu/Help/WolframDocumentation/Table. That's what will help you.
$endgroup$
– Alexei Boulbitch
Mar 22 at 14:32
$begingroup$
Have a look at Menu/Help/WolframDocumentation/Table. That's what will help you.
$endgroup$
– Alexei Boulbitch
Mar 22 at 14:32
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
x1 = 1; xN = 9; Δx = 3;
y1 = 0; yN = 5; Δy = 1;
table = Join @@ Table[{i, j, f[i, j]}, {i, x1, xN, Δx}, {j, y1, yN, Δy}]
{{1, 0, f[1, 0]}, {1, 1, f[1, 1]}, {1, 2, f[1, 2]}, {1, 3,
f[1, 3]}, {1, 4, f[1, 4]}, {1, 5, f[1, 5]},
{4, 0, f[4, 0]}, {4, 1,
f[4, 1]}, {4, 2, f[4, 2]}, {4, 3, f[4, 3]}, {4, 4, f[4, 4]}, {4, 5,
f[4, 5]},
{7, 0, f[7, 0]}, {7, 1, f[7, 1]}, {7, 2, f[7, 2]}, {7, 3,
f[7, 3]}, {7, 4, f[7, 4]}, {7, 5, f[7, 5]}}
Also
table2 = {##, f @ ##} & @@@ Tuples[{Range[x1, xN, Δx], Range[y1, yN, Δy]}]
table2 == table
True
$endgroup$
add a comment |
$begingroup$
This would be a nice answer (using the Outer product to create the 2D array):
x1 = 1; xN = 9; dx = 3;
y1 = 0; yN = 5; dy = 1;
Partition[Flatten[
Outer[Through[{List, f}[#1, #2]] &, Range[x1, xN, dx], Range[y1, yN, dy]]], 3]
except that Outer returns too many levels -- hence the Flatten and Partition are needed to remove the extra brackets. Answer is the same as kglr's.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193773%2fhow-to-create-table-with-2d-function-values%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
x1 = 1; xN = 9; Δx = 3;
y1 = 0; yN = 5; Δy = 1;
table = Join @@ Table[{i, j, f[i, j]}, {i, x1, xN, Δx}, {j, y1, yN, Δy}]
{{1, 0, f[1, 0]}, {1, 1, f[1, 1]}, {1, 2, f[1, 2]}, {1, 3,
f[1, 3]}, {1, 4, f[1, 4]}, {1, 5, f[1, 5]},
{4, 0, f[4, 0]}, {4, 1,
f[4, 1]}, {4, 2, f[4, 2]}, {4, 3, f[4, 3]}, {4, 4, f[4, 4]}, {4, 5,
f[4, 5]},
{7, 0, f[7, 0]}, {7, 1, f[7, 1]}, {7, 2, f[7, 2]}, {7, 3,
f[7, 3]}, {7, 4, f[7, 4]}, {7, 5, f[7, 5]}}
Also
table2 = {##, f @ ##} & @@@ Tuples[{Range[x1, xN, Δx], Range[y1, yN, Δy]}]
table2 == table
True
$endgroup$
add a comment |
$begingroup$
x1 = 1; xN = 9; Δx = 3;
y1 = 0; yN = 5; Δy = 1;
table = Join @@ Table[{i, j, f[i, j]}, {i, x1, xN, Δx}, {j, y1, yN, Δy}]
{{1, 0, f[1, 0]}, {1, 1, f[1, 1]}, {1, 2, f[1, 2]}, {1, 3,
f[1, 3]}, {1, 4, f[1, 4]}, {1, 5, f[1, 5]},
{4, 0, f[4, 0]}, {4, 1,
f[4, 1]}, {4, 2, f[4, 2]}, {4, 3, f[4, 3]}, {4, 4, f[4, 4]}, {4, 5,
f[4, 5]},
{7, 0, f[7, 0]}, {7, 1, f[7, 1]}, {7, 2, f[7, 2]}, {7, 3,
f[7, 3]}, {7, 4, f[7, 4]}, {7, 5, f[7, 5]}}
Also
table2 = {##, f @ ##} & @@@ Tuples[{Range[x1, xN, Δx], Range[y1, yN, Δy]}]
table2 == table
True
$endgroup$
add a comment |
$begingroup$
x1 = 1; xN = 9; Δx = 3;
y1 = 0; yN = 5; Δy = 1;
table = Join @@ Table[{i, j, f[i, j]}, {i, x1, xN, Δx}, {j, y1, yN, Δy}]
{{1, 0, f[1, 0]}, {1, 1, f[1, 1]}, {1, 2, f[1, 2]}, {1, 3,
f[1, 3]}, {1, 4, f[1, 4]}, {1, 5, f[1, 5]},
{4, 0, f[4, 0]}, {4, 1,
f[4, 1]}, {4, 2, f[4, 2]}, {4, 3, f[4, 3]}, {4, 4, f[4, 4]}, {4, 5,
f[4, 5]},
{7, 0, f[7, 0]}, {7, 1, f[7, 1]}, {7, 2, f[7, 2]}, {7, 3,
f[7, 3]}, {7, 4, f[7, 4]}, {7, 5, f[7, 5]}}
Also
table2 = {##, f @ ##} & @@@ Tuples[{Range[x1, xN, Δx], Range[y1, yN, Δy]}]
table2 == table
True
$endgroup$
x1 = 1; xN = 9; Δx = 3;
y1 = 0; yN = 5; Δy = 1;
table = Join @@ Table[{i, j, f[i, j]}, {i, x1, xN, Δx}, {j, y1, yN, Δy}]
{{1, 0, f[1, 0]}, {1, 1, f[1, 1]}, {1, 2, f[1, 2]}, {1, 3,
f[1, 3]}, {1, 4, f[1, 4]}, {1, 5, f[1, 5]},
{4, 0, f[4, 0]}, {4, 1,
f[4, 1]}, {4, 2, f[4, 2]}, {4, 3, f[4, 3]}, {4, 4, f[4, 4]}, {4, 5,
f[4, 5]},
{7, 0, f[7, 0]}, {7, 1, f[7, 1]}, {7, 2, f[7, 2]}, {7, 3,
f[7, 3]}, {7, 4, f[7, 4]}, {7, 5, f[7, 5]}}
Also
table2 = {##, f @ ##} & @@@ Tuples[{Range[x1, xN, Δx], Range[y1, yN, Δy]}]
table2 == table
True
edited Mar 22 at 14:36
answered Mar 22 at 14:30
kglrkglr
189k10206424
189k10206424
add a comment |
add a comment |
$begingroup$
This would be a nice answer (using the Outer product to create the 2D array):
x1 = 1; xN = 9; dx = 3;
y1 = 0; yN = 5; dy = 1;
Partition[Flatten[
Outer[Through[{List, f}[#1, #2]] &, Range[x1, xN, dx], Range[y1, yN, dy]]], 3]
except that Outer returns too many levels -- hence the Flatten and Partition are needed to remove the extra brackets. Answer is the same as kglr's.
$endgroup$
add a comment |
$begingroup$
This would be a nice answer (using the Outer product to create the 2D array):
x1 = 1; xN = 9; dx = 3;
y1 = 0; yN = 5; dy = 1;
Partition[Flatten[
Outer[Through[{List, f}[#1, #2]] &, Range[x1, xN, dx], Range[y1, yN, dy]]], 3]
except that Outer returns too many levels -- hence the Flatten and Partition are needed to remove the extra brackets. Answer is the same as kglr's.
$endgroup$
add a comment |
$begingroup$
This would be a nice answer (using the Outer product to create the 2D array):
x1 = 1; xN = 9; dx = 3;
y1 = 0; yN = 5; dy = 1;
Partition[Flatten[
Outer[Through[{List, f}[#1, #2]] &, Range[x1, xN, dx], Range[y1, yN, dy]]], 3]
except that Outer returns too many levels -- hence the Flatten and Partition are needed to remove the extra brackets. Answer is the same as kglr's.
$endgroup$
This would be a nice answer (using the Outer product to create the 2D array):
x1 = 1; xN = 9; dx = 3;
y1 = 0; yN = 5; dy = 1;
Partition[Flatten[
Outer[Through[{List, f}[#1, #2]] &, Range[x1, xN, dx], Range[y1, yN, dy]]], 3]
except that Outer returns too many levels -- hence the Flatten and Partition are needed to remove the extra brackets. Answer is the same as kglr's.
answered Mar 22 at 16:06
bill sbill s
54.7k377157
54.7k377157
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193773%2fhow-to-create-table-with-2d-function-values%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Have a look at Menu/Help/WolframDocumentation/Table. That's what will help you.
$endgroup$
– Alexei Boulbitch
Mar 22 at 14:32