Solve the equation $frac{x^7}{7}=1+sqrt[7]{10}xleft(x^2-sqrt[7]{10}right)^2$












2












$begingroup$


Solve in $mathbb R$ the following equation.
$$frac{x^7}{7}=1+sqrt[7]{10}xleft(x^2-sqrt[7]{10}right)^2$$



Solution



Setting $x=2times 10^{frac 1{14}}y$, the equation becomes $64y^7-112y^5+56y^3-7y=frac{7}{2sqrt{10}}$



If $|y|le 1$, then $y=cos u$ for some $u$ and equation is $cos 7u=frac{7}{2sqrt{10}}>1$, impossible.



If $y<-1$, then $y=-cosh u$ for some $u$ and equation is $cosh 7u=-frac{7}{2sqrt{10}}<0$, impossible.



If $y>1$, then $y=cosh u$ for some $u$ and equation is $cosh 7u=frac{7}{2sqrt{10}}$ and so $y=cosh(frac{cosh^{-1} frac{7}{2sqrt{10}}}7)$



It's then easy to get $cosh^{-1} frac{7}{2sqrt{10}}=lnfrac{sqrt{10}}2$ and so $y=2^{-frac 87}10^{frac 1{14}}+2^{-frac 67}10^{-frac 1{14}}$



Hence the unique root $boxed{x=sqrt[7]5+sqrt[7]2}$



My question: Could you please solve by using simpler method?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    I'm really impressed at you spotting the $cos^7u$ in there.
    $endgroup$
    – Arthur
    Dec 18 '18 at 12:13


















2












$begingroup$


Solve in $mathbb R$ the following equation.
$$frac{x^7}{7}=1+sqrt[7]{10}xleft(x^2-sqrt[7]{10}right)^2$$



Solution



Setting $x=2times 10^{frac 1{14}}y$, the equation becomes $64y^7-112y^5+56y^3-7y=frac{7}{2sqrt{10}}$



If $|y|le 1$, then $y=cos u$ for some $u$ and equation is $cos 7u=frac{7}{2sqrt{10}}>1$, impossible.



If $y<-1$, then $y=-cosh u$ for some $u$ and equation is $cosh 7u=-frac{7}{2sqrt{10}}<0$, impossible.



If $y>1$, then $y=cosh u$ for some $u$ and equation is $cosh 7u=frac{7}{2sqrt{10}}$ and so $y=cosh(frac{cosh^{-1} frac{7}{2sqrt{10}}}7)$



It's then easy to get $cosh^{-1} frac{7}{2sqrt{10}}=lnfrac{sqrt{10}}2$ and so $y=2^{-frac 87}10^{frac 1{14}}+2^{-frac 67}10^{-frac 1{14}}$



Hence the unique root $boxed{x=sqrt[7]5+sqrt[7]2}$



My question: Could you please solve by using simpler method?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    I'm really impressed at you spotting the $cos^7u$ in there.
    $endgroup$
    – Arthur
    Dec 18 '18 at 12:13
















2












2








2





$begingroup$


Solve in $mathbb R$ the following equation.
$$frac{x^7}{7}=1+sqrt[7]{10}xleft(x^2-sqrt[7]{10}right)^2$$



Solution



Setting $x=2times 10^{frac 1{14}}y$, the equation becomes $64y^7-112y^5+56y^3-7y=frac{7}{2sqrt{10}}$



If $|y|le 1$, then $y=cos u$ for some $u$ and equation is $cos 7u=frac{7}{2sqrt{10}}>1$, impossible.



If $y<-1$, then $y=-cosh u$ for some $u$ and equation is $cosh 7u=-frac{7}{2sqrt{10}}<0$, impossible.



If $y>1$, then $y=cosh u$ for some $u$ and equation is $cosh 7u=frac{7}{2sqrt{10}}$ and so $y=cosh(frac{cosh^{-1} frac{7}{2sqrt{10}}}7)$



It's then easy to get $cosh^{-1} frac{7}{2sqrt{10}}=lnfrac{sqrt{10}}2$ and so $y=2^{-frac 87}10^{frac 1{14}}+2^{-frac 67}10^{-frac 1{14}}$



Hence the unique root $boxed{x=sqrt[7]5+sqrt[7]2}$



My question: Could you please solve by using simpler method?










share|cite|improve this question









$endgroup$




Solve in $mathbb R$ the following equation.
$$frac{x^7}{7}=1+sqrt[7]{10}xleft(x^2-sqrt[7]{10}right)^2$$



Solution



Setting $x=2times 10^{frac 1{14}}y$, the equation becomes $64y^7-112y^5+56y^3-7y=frac{7}{2sqrt{10}}$



If $|y|le 1$, then $y=cos u$ for some $u$ and equation is $cos 7u=frac{7}{2sqrt{10}}>1$, impossible.



If $y<-1$, then $y=-cosh u$ for some $u$ and equation is $cosh 7u=-frac{7}{2sqrt{10}}<0$, impossible.



If $y>1$, then $y=cosh u$ for some $u$ and equation is $cosh 7u=frac{7}{2sqrt{10}}$ and so $y=cosh(frac{cosh^{-1} frac{7}{2sqrt{10}}}7)$



It's then easy to get $cosh^{-1} frac{7}{2sqrt{10}}=lnfrac{sqrt{10}}2$ and so $y=2^{-frac 87}10^{frac 1{14}}+2^{-frac 67}10^{-frac 1{14}}$



Hence the unique root $boxed{x=sqrt[7]5+sqrt[7]2}$



My question: Could you please solve by using simpler method?







inequality hyperbolic-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 18 '18 at 12:01









namnam

973




973








  • 3




    $begingroup$
    I'm really impressed at you spotting the $cos^7u$ in there.
    $endgroup$
    – Arthur
    Dec 18 '18 at 12:13
















  • 3




    $begingroup$
    I'm really impressed at you spotting the $cos^7u$ in there.
    $endgroup$
    – Arthur
    Dec 18 '18 at 12:13










3




3




$begingroup$
I'm really impressed at you spotting the $cos^7u$ in there.
$endgroup$
– Arthur
Dec 18 '18 at 12:13






$begingroup$
I'm really impressed at you spotting the $cos^7u$ in there.
$endgroup$
– Arthur
Dec 18 '18 at 12:13












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045082%2fsolve-the-equation-fracx77-1-sqrt710x-leftx2-sqrt710-right2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045082%2fsolve-the-equation-fracx77-1-sqrt710x-leftx2-sqrt710-right2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa