Solve the equation $frac{x^7}{7}=1+sqrt[7]{10}xleft(x^2-sqrt[7]{10}right)^2$
$begingroup$
Solve in $mathbb R$ the following equation.
$$frac{x^7}{7}=1+sqrt[7]{10}xleft(x^2-sqrt[7]{10}right)^2$$
Solution
Setting $x=2times 10^{frac 1{14}}y$, the equation becomes $64y^7-112y^5+56y^3-7y=frac{7}{2sqrt{10}}$
If $|y|le 1$, then $y=cos u$ for some $u$ and equation is $cos 7u=frac{7}{2sqrt{10}}>1$, impossible.
If $y<-1$, then $y=-cosh u$ for some $u$ and equation is $cosh 7u=-frac{7}{2sqrt{10}}<0$, impossible.
If $y>1$, then $y=cosh u$ for some $u$ and equation is $cosh 7u=frac{7}{2sqrt{10}}$ and so $y=cosh(frac{cosh^{-1} frac{7}{2sqrt{10}}}7)$
It's then easy to get $cosh^{-1} frac{7}{2sqrt{10}}=lnfrac{sqrt{10}}2$ and so $y=2^{-frac 87}10^{frac 1{14}}+2^{-frac 67}10^{-frac 1{14}}$
Hence the unique root $boxed{x=sqrt[7]5+sqrt[7]2}$
My question: Could you please solve by using simpler method?
inequality hyperbolic-functions
$endgroup$
add a comment |
$begingroup$
Solve in $mathbb R$ the following equation.
$$frac{x^7}{7}=1+sqrt[7]{10}xleft(x^2-sqrt[7]{10}right)^2$$
Solution
Setting $x=2times 10^{frac 1{14}}y$, the equation becomes $64y^7-112y^5+56y^3-7y=frac{7}{2sqrt{10}}$
If $|y|le 1$, then $y=cos u$ for some $u$ and equation is $cos 7u=frac{7}{2sqrt{10}}>1$, impossible.
If $y<-1$, then $y=-cosh u$ for some $u$ and equation is $cosh 7u=-frac{7}{2sqrt{10}}<0$, impossible.
If $y>1$, then $y=cosh u$ for some $u$ and equation is $cosh 7u=frac{7}{2sqrt{10}}$ and so $y=cosh(frac{cosh^{-1} frac{7}{2sqrt{10}}}7)$
It's then easy to get $cosh^{-1} frac{7}{2sqrt{10}}=lnfrac{sqrt{10}}2$ and so $y=2^{-frac 87}10^{frac 1{14}}+2^{-frac 67}10^{-frac 1{14}}$
Hence the unique root $boxed{x=sqrt[7]5+sqrt[7]2}$
My question: Could you please solve by using simpler method?
inequality hyperbolic-functions
$endgroup$
3
$begingroup$
I'm really impressed at you spotting the $cos^7u$ in there.
$endgroup$
– Arthur
Dec 18 '18 at 12:13
add a comment |
$begingroup$
Solve in $mathbb R$ the following equation.
$$frac{x^7}{7}=1+sqrt[7]{10}xleft(x^2-sqrt[7]{10}right)^2$$
Solution
Setting $x=2times 10^{frac 1{14}}y$, the equation becomes $64y^7-112y^5+56y^3-7y=frac{7}{2sqrt{10}}$
If $|y|le 1$, then $y=cos u$ for some $u$ and equation is $cos 7u=frac{7}{2sqrt{10}}>1$, impossible.
If $y<-1$, then $y=-cosh u$ for some $u$ and equation is $cosh 7u=-frac{7}{2sqrt{10}}<0$, impossible.
If $y>1$, then $y=cosh u$ for some $u$ and equation is $cosh 7u=frac{7}{2sqrt{10}}$ and so $y=cosh(frac{cosh^{-1} frac{7}{2sqrt{10}}}7)$
It's then easy to get $cosh^{-1} frac{7}{2sqrt{10}}=lnfrac{sqrt{10}}2$ and so $y=2^{-frac 87}10^{frac 1{14}}+2^{-frac 67}10^{-frac 1{14}}$
Hence the unique root $boxed{x=sqrt[7]5+sqrt[7]2}$
My question: Could you please solve by using simpler method?
inequality hyperbolic-functions
$endgroup$
Solve in $mathbb R$ the following equation.
$$frac{x^7}{7}=1+sqrt[7]{10}xleft(x^2-sqrt[7]{10}right)^2$$
Solution
Setting $x=2times 10^{frac 1{14}}y$, the equation becomes $64y^7-112y^5+56y^3-7y=frac{7}{2sqrt{10}}$
If $|y|le 1$, then $y=cos u$ for some $u$ and equation is $cos 7u=frac{7}{2sqrt{10}}>1$, impossible.
If $y<-1$, then $y=-cosh u$ for some $u$ and equation is $cosh 7u=-frac{7}{2sqrt{10}}<0$, impossible.
If $y>1$, then $y=cosh u$ for some $u$ and equation is $cosh 7u=frac{7}{2sqrt{10}}$ and so $y=cosh(frac{cosh^{-1} frac{7}{2sqrt{10}}}7)$
It's then easy to get $cosh^{-1} frac{7}{2sqrt{10}}=lnfrac{sqrt{10}}2$ and so $y=2^{-frac 87}10^{frac 1{14}}+2^{-frac 67}10^{-frac 1{14}}$
Hence the unique root $boxed{x=sqrt[7]5+sqrt[7]2}$
My question: Could you please solve by using simpler method?
inequality hyperbolic-functions
inequality hyperbolic-functions
asked Dec 18 '18 at 12:01
namnam
973
973
3
$begingroup$
I'm really impressed at you spotting the $cos^7u$ in there.
$endgroup$
– Arthur
Dec 18 '18 at 12:13
add a comment |
3
$begingroup$
I'm really impressed at you spotting the $cos^7u$ in there.
$endgroup$
– Arthur
Dec 18 '18 at 12:13
3
3
$begingroup$
I'm really impressed at you spotting the $cos^7u$ in there.
$endgroup$
– Arthur
Dec 18 '18 at 12:13
$begingroup$
I'm really impressed at you spotting the $cos^7u$ in there.
$endgroup$
– Arthur
Dec 18 '18 at 12:13
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045082%2fsolve-the-equation-fracx77-1-sqrt710x-leftx2-sqrt710-right2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045082%2fsolve-the-equation-fracx77-1-sqrt710x-leftx2-sqrt710-right2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
I'm really impressed at you spotting the $cos^7u$ in there.
$endgroup$
– Arthur
Dec 18 '18 at 12:13