Let $g(k)$ be the greatest odd divisor of $k$ show that $ 0< sum_{k=1}^n frac {g(k)}{k} - frac {2n}{3} lt...
$begingroup$
Prove that for all positive intergers $n$,
$$ 0< sum_{k=1}^n frac {g(k)}{k} - frac {2n}{3} < frac {2}{3}$$
Where $g(k)$ denotes the greatest odd divisor of $k$.
Here's my try:
All numbers $k$ can be written as $k= 2^ts$, for nonnegative $t$ and odd $s$, therefore if $k= 2^ts$, then $frac {g(k)}{k} = frac {1}{2^k}$ i.e $frac {g(k)}{k}$ is equal to $1$ divided by the highest power of $2$ dividing $k$. I first thought of proving the inequality for $k= 2^n (n>1)$. Let $Q= sum_{k=1}^{2^n} frac {g(k)}{k}$, then:
$$Q = frac {1}{2}q_1 +frac {1}{2^2}q_2 + cdots + frac {1}{2^{n -1}} q_{2^{n -1}}+ frac {1}{2^n} q_{2^n}+ 2^{n-1} $$.
$q_i$ is the number of times $frac {1}{2^i}$ is added in the summation. It's easy to notice that $q_{2^n} =1$. $q_i$ for $0< i < 2^n$ would be equal to $2^{n-1-i}$ (comes from this $(2^i)(2(2^{n-1-i})-1)$). Then:
$$Q= 2^{n-1}+ frac {1}{2^n} + sum_{i=1}^{n-1} frac{1}{2^i} cdot 2^{n-1-i} $$
$$Q = 2^{n-1}+ frac {1}{2^n} + 2^{n-1} sum_{i=1}^{n-1} (frac{1}{4})^i $$
EDITED
With some algebra we get that:
$$Q - frac {2}{3} cdot 2^n= - frac {4}{3} cdot 2^{n-1} + 2^{n-1}+ frac {1}{2^n} + 2^{n-1} cdot frac {4^{n-1}-1}{4^{n-1}} cdot frac {1}{3} < frac {1}{2^n} < frac {2}{3} $$
Also:
$$ Q - frac {2}{3} cdot 2^n = frac {1}{2^n} - frac {2^{n-1}}{4^{n-1}} cdot frac {1}{3}= frac {1}{2^n} - frac {1}{2^{n-1}} cdot frac {1}{3}> frac {1}{2^n} - frac {1}{2^{n-1}} cdot frac {1}{2}= 0$$
Then I would get:
$$ 0< Q - frac {2}{3} cdot 2^n < frac {2}{3}$$
Well, I thought proving the inequality for $k=2^n$ because I had some idea about how many times the powers of $2$ appeared. I then thought that I could go backwards with induction but I'm stuck. I would like to see some other approaches but I would also like to know if it's possible to solve the problem from the point where I am.
I'll appreciate any hints or help, thanks in advance.
sequences-and-series number-theory inequality divisibility analytic-number-theory
$endgroup$
add a comment |
$begingroup$
Prove that for all positive intergers $n$,
$$ 0< sum_{k=1}^n frac {g(k)}{k} - frac {2n}{3} < frac {2}{3}$$
Where $g(k)$ denotes the greatest odd divisor of $k$.
Here's my try:
All numbers $k$ can be written as $k= 2^ts$, for nonnegative $t$ and odd $s$, therefore if $k= 2^ts$, then $frac {g(k)}{k} = frac {1}{2^k}$ i.e $frac {g(k)}{k}$ is equal to $1$ divided by the highest power of $2$ dividing $k$. I first thought of proving the inequality for $k= 2^n (n>1)$. Let $Q= sum_{k=1}^{2^n} frac {g(k)}{k}$, then:
$$Q = frac {1}{2}q_1 +frac {1}{2^2}q_2 + cdots + frac {1}{2^{n -1}} q_{2^{n -1}}+ frac {1}{2^n} q_{2^n}+ 2^{n-1} $$.
$q_i$ is the number of times $frac {1}{2^i}$ is added in the summation. It's easy to notice that $q_{2^n} =1$. $q_i$ for $0< i < 2^n$ would be equal to $2^{n-1-i}$ (comes from this $(2^i)(2(2^{n-1-i})-1)$). Then:
$$Q= 2^{n-1}+ frac {1}{2^n} + sum_{i=1}^{n-1} frac{1}{2^i} cdot 2^{n-1-i} $$
$$Q = 2^{n-1}+ frac {1}{2^n} + 2^{n-1} sum_{i=1}^{n-1} (frac{1}{4})^i $$
EDITED
With some algebra we get that:
$$Q - frac {2}{3} cdot 2^n= - frac {4}{3} cdot 2^{n-1} + 2^{n-1}+ frac {1}{2^n} + 2^{n-1} cdot frac {4^{n-1}-1}{4^{n-1}} cdot frac {1}{3} < frac {1}{2^n} < frac {2}{3} $$
Also:
$$ Q - frac {2}{3} cdot 2^n = frac {1}{2^n} - frac {2^{n-1}}{4^{n-1}} cdot frac {1}{3}= frac {1}{2^n} - frac {1}{2^{n-1}} cdot frac {1}{3}> frac {1}{2^n} - frac {1}{2^{n-1}} cdot frac {1}{2}= 0$$
Then I would get:
$$ 0< Q - frac {2}{3} cdot 2^n < frac {2}{3}$$
Well, I thought proving the inequality for $k=2^n$ because I had some idea about how many times the powers of $2$ appeared. I then thought that I could go backwards with induction but I'm stuck. I would like to see some other approaches but I would also like to know if it's possible to solve the problem from the point where I am.
I'll appreciate any hints or help, thanks in advance.
sequences-and-series number-theory inequality divisibility analytic-number-theory
$endgroup$
$begingroup$
Check the summation of $(1/4)^i$ part again. The 3 should come out in the denominator.
$endgroup$
– Marco
Dec 16 '18 at 2:03
$begingroup$
Your summation is missing a $q_0$ term.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:15
$begingroup$
@Marco you are right, thank you.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
$begingroup$
@JimmyK4542 Well, I forgot to say that but I did include it, it is in the part where I add $2^{n−1}$ since half of the numbers are odd.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
add a comment |
$begingroup$
Prove that for all positive intergers $n$,
$$ 0< sum_{k=1}^n frac {g(k)}{k} - frac {2n}{3} < frac {2}{3}$$
Where $g(k)$ denotes the greatest odd divisor of $k$.
Here's my try:
All numbers $k$ can be written as $k= 2^ts$, for nonnegative $t$ and odd $s$, therefore if $k= 2^ts$, then $frac {g(k)}{k} = frac {1}{2^k}$ i.e $frac {g(k)}{k}$ is equal to $1$ divided by the highest power of $2$ dividing $k$. I first thought of proving the inequality for $k= 2^n (n>1)$. Let $Q= sum_{k=1}^{2^n} frac {g(k)}{k}$, then:
$$Q = frac {1}{2}q_1 +frac {1}{2^2}q_2 + cdots + frac {1}{2^{n -1}} q_{2^{n -1}}+ frac {1}{2^n} q_{2^n}+ 2^{n-1} $$.
$q_i$ is the number of times $frac {1}{2^i}$ is added in the summation. It's easy to notice that $q_{2^n} =1$. $q_i$ for $0< i < 2^n$ would be equal to $2^{n-1-i}$ (comes from this $(2^i)(2(2^{n-1-i})-1)$). Then:
$$Q= 2^{n-1}+ frac {1}{2^n} + sum_{i=1}^{n-1} frac{1}{2^i} cdot 2^{n-1-i} $$
$$Q = 2^{n-1}+ frac {1}{2^n} + 2^{n-1} sum_{i=1}^{n-1} (frac{1}{4})^i $$
EDITED
With some algebra we get that:
$$Q - frac {2}{3} cdot 2^n= - frac {4}{3} cdot 2^{n-1} + 2^{n-1}+ frac {1}{2^n} + 2^{n-1} cdot frac {4^{n-1}-1}{4^{n-1}} cdot frac {1}{3} < frac {1}{2^n} < frac {2}{3} $$
Also:
$$ Q - frac {2}{3} cdot 2^n = frac {1}{2^n} - frac {2^{n-1}}{4^{n-1}} cdot frac {1}{3}= frac {1}{2^n} - frac {1}{2^{n-1}} cdot frac {1}{3}> frac {1}{2^n} - frac {1}{2^{n-1}} cdot frac {1}{2}= 0$$
Then I would get:
$$ 0< Q - frac {2}{3} cdot 2^n < frac {2}{3}$$
Well, I thought proving the inequality for $k=2^n$ because I had some idea about how many times the powers of $2$ appeared. I then thought that I could go backwards with induction but I'm stuck. I would like to see some other approaches but I would also like to know if it's possible to solve the problem from the point where I am.
I'll appreciate any hints or help, thanks in advance.
sequences-and-series number-theory inequality divisibility analytic-number-theory
$endgroup$
Prove that for all positive intergers $n$,
$$ 0< sum_{k=1}^n frac {g(k)}{k} - frac {2n}{3} < frac {2}{3}$$
Where $g(k)$ denotes the greatest odd divisor of $k$.
Here's my try:
All numbers $k$ can be written as $k= 2^ts$, for nonnegative $t$ and odd $s$, therefore if $k= 2^ts$, then $frac {g(k)}{k} = frac {1}{2^k}$ i.e $frac {g(k)}{k}$ is equal to $1$ divided by the highest power of $2$ dividing $k$. I first thought of proving the inequality for $k= 2^n (n>1)$. Let $Q= sum_{k=1}^{2^n} frac {g(k)}{k}$, then:
$$Q = frac {1}{2}q_1 +frac {1}{2^2}q_2 + cdots + frac {1}{2^{n -1}} q_{2^{n -1}}+ frac {1}{2^n} q_{2^n}+ 2^{n-1} $$.
$q_i$ is the number of times $frac {1}{2^i}$ is added in the summation. It's easy to notice that $q_{2^n} =1$. $q_i$ for $0< i < 2^n$ would be equal to $2^{n-1-i}$ (comes from this $(2^i)(2(2^{n-1-i})-1)$). Then:
$$Q= 2^{n-1}+ frac {1}{2^n} + sum_{i=1}^{n-1} frac{1}{2^i} cdot 2^{n-1-i} $$
$$Q = 2^{n-1}+ frac {1}{2^n} + 2^{n-1} sum_{i=1}^{n-1} (frac{1}{4})^i $$
EDITED
With some algebra we get that:
$$Q - frac {2}{3} cdot 2^n= - frac {4}{3} cdot 2^{n-1} + 2^{n-1}+ frac {1}{2^n} + 2^{n-1} cdot frac {4^{n-1}-1}{4^{n-1}} cdot frac {1}{3} < frac {1}{2^n} < frac {2}{3} $$
Also:
$$ Q - frac {2}{3} cdot 2^n = frac {1}{2^n} - frac {2^{n-1}}{4^{n-1}} cdot frac {1}{3}= frac {1}{2^n} - frac {1}{2^{n-1}} cdot frac {1}{3}> frac {1}{2^n} - frac {1}{2^{n-1}} cdot frac {1}{2}= 0$$
Then I would get:
$$ 0< Q - frac {2}{3} cdot 2^n < frac {2}{3}$$
Well, I thought proving the inequality for $k=2^n$ because I had some idea about how many times the powers of $2$ appeared. I then thought that I could go backwards with induction but I'm stuck. I would like to see some other approaches but I would also like to know if it's possible to solve the problem from the point where I am.
I'll appreciate any hints or help, thanks in advance.
sequences-and-series number-theory inequality divisibility analytic-number-theory
sequences-and-series number-theory inequality divisibility analytic-number-theory
edited Dec 18 '18 at 9:45
Batominovski
33.1k33293
33.1k33293
asked Dec 15 '18 at 5:19
VmimiVmimi
372212
372212
$begingroup$
Check the summation of $(1/4)^i$ part again. The 3 should come out in the denominator.
$endgroup$
– Marco
Dec 16 '18 at 2:03
$begingroup$
Your summation is missing a $q_0$ term.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:15
$begingroup$
@Marco you are right, thank you.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
$begingroup$
@JimmyK4542 Well, I forgot to say that but I did include it, it is in the part where I add $2^{n−1}$ since half of the numbers are odd.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
add a comment |
$begingroup$
Check the summation of $(1/4)^i$ part again. The 3 should come out in the denominator.
$endgroup$
– Marco
Dec 16 '18 at 2:03
$begingroup$
Your summation is missing a $q_0$ term.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:15
$begingroup$
@Marco you are right, thank you.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
$begingroup$
@JimmyK4542 Well, I forgot to say that but I did include it, it is in the part where I add $2^{n−1}$ since half of the numbers are odd.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
$begingroup$
Check the summation of $(1/4)^i$ part again. The 3 should come out in the denominator.
$endgroup$
– Marco
Dec 16 '18 at 2:03
$begingroup$
Check the summation of $(1/4)^i$ part again. The 3 should come out in the denominator.
$endgroup$
– Marco
Dec 16 '18 at 2:03
$begingroup$
Your summation is missing a $q_0$ term.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:15
$begingroup$
Your summation is missing a $q_0$ term.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:15
$begingroup$
@Marco you are right, thank you.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
$begingroup$
@Marco you are right, thank you.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
$begingroup$
@JimmyK4542 Well, I forgot to say that but I did include it, it is in the part where I add $2^{n−1}$ since half of the numbers are odd.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
$begingroup$
@JimmyK4542 Well, I forgot to say that but I did include it, it is in the part where I add $2^{n−1}$ since half of the numbers are odd.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Since $2^jmid k$ for each $jle v_2(k)$ and $sumlimits_{j=1}^n2^{-j}=1-2^{-n}$, we have
$$
2^{-v_2(k)}=1-sum_{j=1}^inftyleft[,2^j,middle|,k,right]2^{-j}tag1
$$
where $[dots]$ are Iverson brackets. Thus,
$$
begin{align}
sum_{k=1}^nfrac{g(k)}k
&=sum_{k=1}^n2^{-v_2(k)}\
&=sum_{k=1}^nleft(1-sum_{j=1}^inftyleft[,2^j,middle|,k,right]2^{-j}right)\
&=n-sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}tag2
end{align}
$$
Furthermore, since $leftlfloorfrac n{2^j}rightrfloorlefrac n{2^j}$ with equality iff $nequiv0pmod{2^j}$,
$$
begin{align}
sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}
&lesum_{j=1}^inftyfrac n{2^j}frac1{2^j}\
&=frac n3tag3
end{align}
$$
and $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$ with equality iff $nequiv-1pmod{2^j}$,
$$
begin{align}
sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}
&gesum_{j=1}^inftyfrac{n-(2^j-1)}{2^j}frac1{2^j}\
&=frac n3-frac23tag4
end{align}
$$
Equality in $(3)$ can only occur if $nequiv0pmod{2^j}$ for all $j$ ($implies n=0$) and equality in $(4)$ can only occur if $nequiv-1pmod{2^j}$ for all $j$ ($implies n=-1$). Therefore, for $nge1$,
$$
frac{2n}3ltsum_{k=1}^nfrac{g(k)}kltfrac{2n}3+frac23tag5
$$
$endgroup$
$begingroup$
I understood almost everything about your proof. In $(2)$, in the final summation I know per each $j$ you have to add bunches of $2^{-j}$. I think you had to add the amount of numbers that are divisible by $2^{-j}$, that's why it is $sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}$?
$endgroup$
– Vmimi
Dec 19 '18 at 20:49
$begingroup$
And in $4)$ you said that $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$, that's because if you let $leftlfloorfrac n{2^j}rightrfloor = x$, then $frac {n+1}{2^j} < x+1$ unless $n+1$ is divisible by $2^j$?.
$endgroup$
– Vmimi
Dec 19 '18 at 20:56
$begingroup$
For $(2)$: yes. For $(4)$: $leftlfloorfrac n{2^j}rightrfloorgefrac {n+1}{2^j}-1iffleftlfloorfrac n{2^j}rightrfloorgtfrac {n}{2^j}-1$, which is the same thing.
$endgroup$
– robjohn♦
Dec 19 '18 at 21:40
add a comment |
$begingroup$
Let $v(k)$ be the largest integer $m$ such that $2^m$ divides $k$. As you noted, $dfrac{g(k)}{k} = 2^{-v(k)}$.
So, let $S_n = displaystylesum_{k = 1}^{n}dfrac{g(k)}{k} = sum_{k = 1}^{n}2^{-v(k)}$.
Then, we have:
begin{align*}
S_{2n} &= displaystylesum_{k = 1}^{2n}2^{-v(k)}
\
&= sum_{k = 1}^{n}2^{-v(2k-1)} + sum_{k = 1}^{n}2^{-v(2k)}
\
&= sum_{k = 1}^{n}2^{-0} + sum_{k = 1}^{n}2^{-(1+v(k))}
\
&= sum_{k = 1}^{n}1 + dfrac{1}{2}sum_{k = 1}^{n}2^{-v(k)}
\
&= n + dfrac{1}{2}S_n
end{align*}
Also, $S_{2n+1} = displaystylesum_{k = 1}^{2n+1}2^{-v(k)} = 2^{-v(2n+1)} + sum_{k = 1}^{2n}2^{-v(k)} = 2^{0} + S_{2n} = S_{2n} + 1$.
We can now proceed by induction. Trivially, $S_1 = 1$, so $S_1 > dfrac{2}{3}$ and $S_1 < dfrac{4}{3}$.
Now, suppose that for some integer $n$, we have $dfrac{2n}{3} < S_n < dfrac{2n}{3} + dfrac{2}{3}$.
Then, we have:
$$S_{2n} = dfrac{1}{2}S_n + n > dfrac{1}{2}left(dfrac{2n}{3}right) + n = dfrac{4n}{3} = dfrac{2 cdot 2n}{3}$$
$$S_{2n} = dfrac{1}{2}S_n + n < dfrac{1}{2}left(dfrac{2n}{3}+dfrac{2}{3}right) + n = dfrac{4n}{3} + dfrac{1}{3} < dfrac{2 cdot 2n}{3} + dfrac{2}{3}$$
$$S_{2n+1} = S_{2n}+1 > left(dfrac{4n}{3}right)+1 > dfrac{4n}{3}+dfrac{2}{3} = dfrac{2(2n+1)}{3}$$
$$S_{2n+1} = S_{2n}+1 < left(dfrac{4n}{3}+dfrac{1}{3}right)+1 = dfrac{2(2n+1)}{3} + dfrac{2}{3}.$$
Hence, $dfrac{2 cdot 2n}{3} < S_{2n} < dfrac{2 cdot 2n}{3} + dfrac{2}{3}$ and $dfrac{2(2n+1)}{3} < S_{2n+1} < dfrac{2(2n+1)}{3} + dfrac{2}{3}$.
So by induction, we have that $dfrac{2n}{3} < S_n < dfrac{2n}{3} + dfrac{2}{3}$ for all $n$, as desired.
$endgroup$
1
$begingroup$
So does $lim_{n to infty} S_n-dfrac{2n}{3}$ exist; if so, what is it?
$endgroup$
– marty cohen
Dec 16 '18 at 2:35
1
$begingroup$
If $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right) = L$, then $displaystylelim_{n to infty}left(S_{2n} - tfrac{2 cdot 2n}{3}right) = L$ and $displaystylelim_{n to infty}left(S_{2n+1} - tfrac{2(2n+1)}{3}right) = L$ as well. But since $S_{2n+1}-tfrac{2(2n+1)}{3} = left(S_{2n}-tfrac{2 cdot 2n}{3}right) + dfrac{1}{3}$ holds for all $n$, taking the limit of both sides as $n to infty$ yields, $L = L + tfrac{1}{3}$, a contradiction. Thus, $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right)$ doesn't exist.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:46
1
$begingroup$
So $S_n$ seems to behave differently for even and odd $n$. How about $lim S_{2n+k}-2(2n+k)/3$ for $k=0$ a nd $1$?
$endgroup$
– marty cohen
Dec 16 '18 at 9:52
1
$begingroup$
If we let $x_n = S_n - tfrac{2n}{3}$, then we have the relations $x_{2n} = tfrac{1}{2}x_n$ and $x_{2n+1} = x_{2n}+tfrac{1}{3}$. From generating the first $2^{20}$ terms of $x_n$ in MATLAB and plotting it, It appears that $displaystylelim_{n to infty}x_{2n+k}$ not exist for $k = 0,1$. Also, I conjecture that $displaystylelim_{n to infty}x_{n cdot 2^m+ k}$ does not exist for any $0 le k le 2^m-1$ and $m in mathbb{N}$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 10:43
1
$begingroup$
I can also conjecture that for any $m in mathbb{N}$ and $0 le k le 2^m-1$, we have $displaystyleliminflimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k)}{3 cdot 2^{m-1}}$ and $displaystylelimsuplimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k) + 1}{3 cdot 2^{m-1}}$ where $r_m(k)$ is the number obtained by reversing the $m$ digit binary representation of $k$, e.g. $r_3(1) = r_3(001_2) = 100_2 = 4$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 11:10
|
show 3 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040201%2flet-gk-be-the-greatest-odd-divisor-of-k-show-that-0-sum-k-1n-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $2^jmid k$ for each $jle v_2(k)$ and $sumlimits_{j=1}^n2^{-j}=1-2^{-n}$, we have
$$
2^{-v_2(k)}=1-sum_{j=1}^inftyleft[,2^j,middle|,k,right]2^{-j}tag1
$$
where $[dots]$ are Iverson brackets. Thus,
$$
begin{align}
sum_{k=1}^nfrac{g(k)}k
&=sum_{k=1}^n2^{-v_2(k)}\
&=sum_{k=1}^nleft(1-sum_{j=1}^inftyleft[,2^j,middle|,k,right]2^{-j}right)\
&=n-sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}tag2
end{align}
$$
Furthermore, since $leftlfloorfrac n{2^j}rightrfloorlefrac n{2^j}$ with equality iff $nequiv0pmod{2^j}$,
$$
begin{align}
sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}
&lesum_{j=1}^inftyfrac n{2^j}frac1{2^j}\
&=frac n3tag3
end{align}
$$
and $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$ with equality iff $nequiv-1pmod{2^j}$,
$$
begin{align}
sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}
&gesum_{j=1}^inftyfrac{n-(2^j-1)}{2^j}frac1{2^j}\
&=frac n3-frac23tag4
end{align}
$$
Equality in $(3)$ can only occur if $nequiv0pmod{2^j}$ for all $j$ ($implies n=0$) and equality in $(4)$ can only occur if $nequiv-1pmod{2^j}$ for all $j$ ($implies n=-1$). Therefore, for $nge1$,
$$
frac{2n}3ltsum_{k=1}^nfrac{g(k)}kltfrac{2n}3+frac23tag5
$$
$endgroup$
$begingroup$
I understood almost everything about your proof. In $(2)$, in the final summation I know per each $j$ you have to add bunches of $2^{-j}$. I think you had to add the amount of numbers that are divisible by $2^{-j}$, that's why it is $sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}$?
$endgroup$
– Vmimi
Dec 19 '18 at 20:49
$begingroup$
And in $4)$ you said that $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$, that's because if you let $leftlfloorfrac n{2^j}rightrfloor = x$, then $frac {n+1}{2^j} < x+1$ unless $n+1$ is divisible by $2^j$?.
$endgroup$
– Vmimi
Dec 19 '18 at 20:56
$begingroup$
For $(2)$: yes. For $(4)$: $leftlfloorfrac n{2^j}rightrfloorgefrac {n+1}{2^j}-1iffleftlfloorfrac n{2^j}rightrfloorgtfrac {n}{2^j}-1$, which is the same thing.
$endgroup$
– robjohn♦
Dec 19 '18 at 21:40
add a comment |
$begingroup$
Since $2^jmid k$ for each $jle v_2(k)$ and $sumlimits_{j=1}^n2^{-j}=1-2^{-n}$, we have
$$
2^{-v_2(k)}=1-sum_{j=1}^inftyleft[,2^j,middle|,k,right]2^{-j}tag1
$$
where $[dots]$ are Iverson brackets. Thus,
$$
begin{align}
sum_{k=1}^nfrac{g(k)}k
&=sum_{k=1}^n2^{-v_2(k)}\
&=sum_{k=1}^nleft(1-sum_{j=1}^inftyleft[,2^j,middle|,k,right]2^{-j}right)\
&=n-sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}tag2
end{align}
$$
Furthermore, since $leftlfloorfrac n{2^j}rightrfloorlefrac n{2^j}$ with equality iff $nequiv0pmod{2^j}$,
$$
begin{align}
sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}
&lesum_{j=1}^inftyfrac n{2^j}frac1{2^j}\
&=frac n3tag3
end{align}
$$
and $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$ with equality iff $nequiv-1pmod{2^j}$,
$$
begin{align}
sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}
&gesum_{j=1}^inftyfrac{n-(2^j-1)}{2^j}frac1{2^j}\
&=frac n3-frac23tag4
end{align}
$$
Equality in $(3)$ can only occur if $nequiv0pmod{2^j}$ for all $j$ ($implies n=0$) and equality in $(4)$ can only occur if $nequiv-1pmod{2^j}$ for all $j$ ($implies n=-1$). Therefore, for $nge1$,
$$
frac{2n}3ltsum_{k=1}^nfrac{g(k)}kltfrac{2n}3+frac23tag5
$$
$endgroup$
$begingroup$
I understood almost everything about your proof. In $(2)$, in the final summation I know per each $j$ you have to add bunches of $2^{-j}$. I think you had to add the amount of numbers that are divisible by $2^{-j}$, that's why it is $sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}$?
$endgroup$
– Vmimi
Dec 19 '18 at 20:49
$begingroup$
And in $4)$ you said that $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$, that's because if you let $leftlfloorfrac n{2^j}rightrfloor = x$, then $frac {n+1}{2^j} < x+1$ unless $n+1$ is divisible by $2^j$?.
$endgroup$
– Vmimi
Dec 19 '18 at 20:56
$begingroup$
For $(2)$: yes. For $(4)$: $leftlfloorfrac n{2^j}rightrfloorgefrac {n+1}{2^j}-1iffleftlfloorfrac n{2^j}rightrfloorgtfrac {n}{2^j}-1$, which is the same thing.
$endgroup$
– robjohn♦
Dec 19 '18 at 21:40
add a comment |
$begingroup$
Since $2^jmid k$ for each $jle v_2(k)$ and $sumlimits_{j=1}^n2^{-j}=1-2^{-n}$, we have
$$
2^{-v_2(k)}=1-sum_{j=1}^inftyleft[,2^j,middle|,k,right]2^{-j}tag1
$$
where $[dots]$ are Iverson brackets. Thus,
$$
begin{align}
sum_{k=1}^nfrac{g(k)}k
&=sum_{k=1}^n2^{-v_2(k)}\
&=sum_{k=1}^nleft(1-sum_{j=1}^inftyleft[,2^j,middle|,k,right]2^{-j}right)\
&=n-sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}tag2
end{align}
$$
Furthermore, since $leftlfloorfrac n{2^j}rightrfloorlefrac n{2^j}$ with equality iff $nequiv0pmod{2^j}$,
$$
begin{align}
sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}
&lesum_{j=1}^inftyfrac n{2^j}frac1{2^j}\
&=frac n3tag3
end{align}
$$
and $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$ with equality iff $nequiv-1pmod{2^j}$,
$$
begin{align}
sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}
&gesum_{j=1}^inftyfrac{n-(2^j-1)}{2^j}frac1{2^j}\
&=frac n3-frac23tag4
end{align}
$$
Equality in $(3)$ can only occur if $nequiv0pmod{2^j}$ for all $j$ ($implies n=0$) and equality in $(4)$ can only occur if $nequiv-1pmod{2^j}$ for all $j$ ($implies n=-1$). Therefore, for $nge1$,
$$
frac{2n}3ltsum_{k=1}^nfrac{g(k)}kltfrac{2n}3+frac23tag5
$$
$endgroup$
Since $2^jmid k$ for each $jle v_2(k)$ and $sumlimits_{j=1}^n2^{-j}=1-2^{-n}$, we have
$$
2^{-v_2(k)}=1-sum_{j=1}^inftyleft[,2^j,middle|,k,right]2^{-j}tag1
$$
where $[dots]$ are Iverson brackets. Thus,
$$
begin{align}
sum_{k=1}^nfrac{g(k)}k
&=sum_{k=1}^n2^{-v_2(k)}\
&=sum_{k=1}^nleft(1-sum_{j=1}^inftyleft[,2^j,middle|,k,right]2^{-j}right)\
&=n-sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}tag2
end{align}
$$
Furthermore, since $leftlfloorfrac n{2^j}rightrfloorlefrac n{2^j}$ with equality iff $nequiv0pmod{2^j}$,
$$
begin{align}
sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}
&lesum_{j=1}^inftyfrac n{2^j}frac1{2^j}\
&=frac n3tag3
end{align}
$$
and $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$ with equality iff $nequiv-1pmod{2^j}$,
$$
begin{align}
sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}
&gesum_{j=1}^inftyfrac{n-(2^j-1)}{2^j}frac1{2^j}\
&=frac n3-frac23tag4
end{align}
$$
Equality in $(3)$ can only occur if $nequiv0pmod{2^j}$ for all $j$ ($implies n=0$) and equality in $(4)$ can only occur if $nequiv-1pmod{2^j}$ for all $j$ ($implies n=-1$). Therefore, for $nge1$,
$$
frac{2n}3ltsum_{k=1}^nfrac{g(k)}kltfrac{2n}3+frac23tag5
$$
edited Dec 18 '18 at 14:00
answered Dec 17 '18 at 6:27
robjohn♦robjohn
269k27309635
269k27309635
$begingroup$
I understood almost everything about your proof. In $(2)$, in the final summation I know per each $j$ you have to add bunches of $2^{-j}$. I think you had to add the amount of numbers that are divisible by $2^{-j}$, that's why it is $sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}$?
$endgroup$
– Vmimi
Dec 19 '18 at 20:49
$begingroup$
And in $4)$ you said that $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$, that's because if you let $leftlfloorfrac n{2^j}rightrfloor = x$, then $frac {n+1}{2^j} < x+1$ unless $n+1$ is divisible by $2^j$?.
$endgroup$
– Vmimi
Dec 19 '18 at 20:56
$begingroup$
For $(2)$: yes. For $(4)$: $leftlfloorfrac n{2^j}rightrfloorgefrac {n+1}{2^j}-1iffleftlfloorfrac n{2^j}rightrfloorgtfrac {n}{2^j}-1$, which is the same thing.
$endgroup$
– robjohn♦
Dec 19 '18 at 21:40
add a comment |
$begingroup$
I understood almost everything about your proof. In $(2)$, in the final summation I know per each $j$ you have to add bunches of $2^{-j}$. I think you had to add the amount of numbers that are divisible by $2^{-j}$, that's why it is $sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}$?
$endgroup$
– Vmimi
Dec 19 '18 at 20:49
$begingroup$
And in $4)$ you said that $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$, that's because if you let $leftlfloorfrac n{2^j}rightrfloor = x$, then $frac {n+1}{2^j} < x+1$ unless $n+1$ is divisible by $2^j$?.
$endgroup$
– Vmimi
Dec 19 '18 at 20:56
$begingroup$
For $(2)$: yes. For $(4)$: $leftlfloorfrac n{2^j}rightrfloorgefrac {n+1}{2^j}-1iffleftlfloorfrac n{2^j}rightrfloorgtfrac {n}{2^j}-1$, which is the same thing.
$endgroup$
– robjohn♦
Dec 19 '18 at 21:40
$begingroup$
I understood almost everything about your proof. In $(2)$, in the final summation I know per each $j$ you have to add bunches of $2^{-j}$. I think you had to add the amount of numbers that are divisible by $2^{-j}$, that's why it is $sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}$?
$endgroup$
– Vmimi
Dec 19 '18 at 20:49
$begingroup$
I understood almost everything about your proof. In $(2)$, in the final summation I know per each $j$ you have to add bunches of $2^{-j}$. I think you had to add the amount of numbers that are divisible by $2^{-j}$, that's why it is $sum_{j=1}^inftyleftlfloorfrac n{2^j}rightrfloorfrac1{2^j}$?
$endgroup$
– Vmimi
Dec 19 '18 at 20:49
$begingroup$
And in $4)$ you said that $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$, that's because if you let $leftlfloorfrac n{2^j}rightrfloor = x$, then $frac {n+1}{2^j} < x+1$ unless $n+1$ is divisible by $2^j$?.
$endgroup$
– Vmimi
Dec 19 '18 at 20:56
$begingroup$
And in $4)$ you said that $leftlfloorfrac n{2^j}rightrfloorgefrac {n-left(2^j-1right)}{2^j}$, that's because if you let $leftlfloorfrac n{2^j}rightrfloor = x$, then $frac {n+1}{2^j} < x+1$ unless $n+1$ is divisible by $2^j$?.
$endgroup$
– Vmimi
Dec 19 '18 at 20:56
$begingroup$
For $(2)$: yes. For $(4)$: $leftlfloorfrac n{2^j}rightrfloorgefrac {n+1}{2^j}-1iffleftlfloorfrac n{2^j}rightrfloorgtfrac {n}{2^j}-1$, which is the same thing.
$endgroup$
– robjohn♦
Dec 19 '18 at 21:40
$begingroup$
For $(2)$: yes. For $(4)$: $leftlfloorfrac n{2^j}rightrfloorgefrac {n+1}{2^j}-1iffleftlfloorfrac n{2^j}rightrfloorgtfrac {n}{2^j}-1$, which is the same thing.
$endgroup$
– robjohn♦
Dec 19 '18 at 21:40
add a comment |
$begingroup$
Let $v(k)$ be the largest integer $m$ such that $2^m$ divides $k$. As you noted, $dfrac{g(k)}{k} = 2^{-v(k)}$.
So, let $S_n = displaystylesum_{k = 1}^{n}dfrac{g(k)}{k} = sum_{k = 1}^{n}2^{-v(k)}$.
Then, we have:
begin{align*}
S_{2n} &= displaystylesum_{k = 1}^{2n}2^{-v(k)}
\
&= sum_{k = 1}^{n}2^{-v(2k-1)} + sum_{k = 1}^{n}2^{-v(2k)}
\
&= sum_{k = 1}^{n}2^{-0} + sum_{k = 1}^{n}2^{-(1+v(k))}
\
&= sum_{k = 1}^{n}1 + dfrac{1}{2}sum_{k = 1}^{n}2^{-v(k)}
\
&= n + dfrac{1}{2}S_n
end{align*}
Also, $S_{2n+1} = displaystylesum_{k = 1}^{2n+1}2^{-v(k)} = 2^{-v(2n+1)} + sum_{k = 1}^{2n}2^{-v(k)} = 2^{0} + S_{2n} = S_{2n} + 1$.
We can now proceed by induction. Trivially, $S_1 = 1$, so $S_1 > dfrac{2}{3}$ and $S_1 < dfrac{4}{3}$.
Now, suppose that for some integer $n$, we have $dfrac{2n}{3} < S_n < dfrac{2n}{3} + dfrac{2}{3}$.
Then, we have:
$$S_{2n} = dfrac{1}{2}S_n + n > dfrac{1}{2}left(dfrac{2n}{3}right) + n = dfrac{4n}{3} = dfrac{2 cdot 2n}{3}$$
$$S_{2n} = dfrac{1}{2}S_n + n < dfrac{1}{2}left(dfrac{2n}{3}+dfrac{2}{3}right) + n = dfrac{4n}{3} + dfrac{1}{3} < dfrac{2 cdot 2n}{3} + dfrac{2}{3}$$
$$S_{2n+1} = S_{2n}+1 > left(dfrac{4n}{3}right)+1 > dfrac{4n}{3}+dfrac{2}{3} = dfrac{2(2n+1)}{3}$$
$$S_{2n+1} = S_{2n}+1 < left(dfrac{4n}{3}+dfrac{1}{3}right)+1 = dfrac{2(2n+1)}{3} + dfrac{2}{3}.$$
Hence, $dfrac{2 cdot 2n}{3} < S_{2n} < dfrac{2 cdot 2n}{3} + dfrac{2}{3}$ and $dfrac{2(2n+1)}{3} < S_{2n+1} < dfrac{2(2n+1)}{3} + dfrac{2}{3}$.
So by induction, we have that $dfrac{2n}{3} < S_n < dfrac{2n}{3} + dfrac{2}{3}$ for all $n$, as desired.
$endgroup$
1
$begingroup$
So does $lim_{n to infty} S_n-dfrac{2n}{3}$ exist; if so, what is it?
$endgroup$
– marty cohen
Dec 16 '18 at 2:35
1
$begingroup$
If $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right) = L$, then $displaystylelim_{n to infty}left(S_{2n} - tfrac{2 cdot 2n}{3}right) = L$ and $displaystylelim_{n to infty}left(S_{2n+1} - tfrac{2(2n+1)}{3}right) = L$ as well. But since $S_{2n+1}-tfrac{2(2n+1)}{3} = left(S_{2n}-tfrac{2 cdot 2n}{3}right) + dfrac{1}{3}$ holds for all $n$, taking the limit of both sides as $n to infty$ yields, $L = L + tfrac{1}{3}$, a contradiction. Thus, $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right)$ doesn't exist.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:46
1
$begingroup$
So $S_n$ seems to behave differently for even and odd $n$. How about $lim S_{2n+k}-2(2n+k)/3$ for $k=0$ a nd $1$?
$endgroup$
– marty cohen
Dec 16 '18 at 9:52
1
$begingroup$
If we let $x_n = S_n - tfrac{2n}{3}$, then we have the relations $x_{2n} = tfrac{1}{2}x_n$ and $x_{2n+1} = x_{2n}+tfrac{1}{3}$. From generating the first $2^{20}$ terms of $x_n$ in MATLAB and plotting it, It appears that $displaystylelim_{n to infty}x_{2n+k}$ not exist for $k = 0,1$. Also, I conjecture that $displaystylelim_{n to infty}x_{n cdot 2^m+ k}$ does not exist for any $0 le k le 2^m-1$ and $m in mathbb{N}$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 10:43
1
$begingroup$
I can also conjecture that for any $m in mathbb{N}$ and $0 le k le 2^m-1$, we have $displaystyleliminflimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k)}{3 cdot 2^{m-1}}$ and $displaystylelimsuplimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k) + 1}{3 cdot 2^{m-1}}$ where $r_m(k)$ is the number obtained by reversing the $m$ digit binary representation of $k$, e.g. $r_3(1) = r_3(001_2) = 100_2 = 4$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 11:10
|
show 3 more comments
$begingroup$
Let $v(k)$ be the largest integer $m$ such that $2^m$ divides $k$. As you noted, $dfrac{g(k)}{k} = 2^{-v(k)}$.
So, let $S_n = displaystylesum_{k = 1}^{n}dfrac{g(k)}{k} = sum_{k = 1}^{n}2^{-v(k)}$.
Then, we have:
begin{align*}
S_{2n} &= displaystylesum_{k = 1}^{2n}2^{-v(k)}
\
&= sum_{k = 1}^{n}2^{-v(2k-1)} + sum_{k = 1}^{n}2^{-v(2k)}
\
&= sum_{k = 1}^{n}2^{-0} + sum_{k = 1}^{n}2^{-(1+v(k))}
\
&= sum_{k = 1}^{n}1 + dfrac{1}{2}sum_{k = 1}^{n}2^{-v(k)}
\
&= n + dfrac{1}{2}S_n
end{align*}
Also, $S_{2n+1} = displaystylesum_{k = 1}^{2n+1}2^{-v(k)} = 2^{-v(2n+1)} + sum_{k = 1}^{2n}2^{-v(k)} = 2^{0} + S_{2n} = S_{2n} + 1$.
We can now proceed by induction. Trivially, $S_1 = 1$, so $S_1 > dfrac{2}{3}$ and $S_1 < dfrac{4}{3}$.
Now, suppose that for some integer $n$, we have $dfrac{2n}{3} < S_n < dfrac{2n}{3} + dfrac{2}{3}$.
Then, we have:
$$S_{2n} = dfrac{1}{2}S_n + n > dfrac{1}{2}left(dfrac{2n}{3}right) + n = dfrac{4n}{3} = dfrac{2 cdot 2n}{3}$$
$$S_{2n} = dfrac{1}{2}S_n + n < dfrac{1}{2}left(dfrac{2n}{3}+dfrac{2}{3}right) + n = dfrac{4n}{3} + dfrac{1}{3} < dfrac{2 cdot 2n}{3} + dfrac{2}{3}$$
$$S_{2n+1} = S_{2n}+1 > left(dfrac{4n}{3}right)+1 > dfrac{4n}{3}+dfrac{2}{3} = dfrac{2(2n+1)}{3}$$
$$S_{2n+1} = S_{2n}+1 < left(dfrac{4n}{3}+dfrac{1}{3}right)+1 = dfrac{2(2n+1)}{3} + dfrac{2}{3}.$$
Hence, $dfrac{2 cdot 2n}{3} < S_{2n} < dfrac{2 cdot 2n}{3} + dfrac{2}{3}$ and $dfrac{2(2n+1)}{3} < S_{2n+1} < dfrac{2(2n+1)}{3} + dfrac{2}{3}$.
So by induction, we have that $dfrac{2n}{3} < S_n < dfrac{2n}{3} + dfrac{2}{3}$ for all $n$, as desired.
$endgroup$
1
$begingroup$
So does $lim_{n to infty} S_n-dfrac{2n}{3}$ exist; if so, what is it?
$endgroup$
– marty cohen
Dec 16 '18 at 2:35
1
$begingroup$
If $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right) = L$, then $displaystylelim_{n to infty}left(S_{2n} - tfrac{2 cdot 2n}{3}right) = L$ and $displaystylelim_{n to infty}left(S_{2n+1} - tfrac{2(2n+1)}{3}right) = L$ as well. But since $S_{2n+1}-tfrac{2(2n+1)}{3} = left(S_{2n}-tfrac{2 cdot 2n}{3}right) + dfrac{1}{3}$ holds for all $n$, taking the limit of both sides as $n to infty$ yields, $L = L + tfrac{1}{3}$, a contradiction. Thus, $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right)$ doesn't exist.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:46
1
$begingroup$
So $S_n$ seems to behave differently for even and odd $n$. How about $lim S_{2n+k}-2(2n+k)/3$ for $k=0$ a nd $1$?
$endgroup$
– marty cohen
Dec 16 '18 at 9:52
1
$begingroup$
If we let $x_n = S_n - tfrac{2n}{3}$, then we have the relations $x_{2n} = tfrac{1}{2}x_n$ and $x_{2n+1} = x_{2n}+tfrac{1}{3}$. From generating the first $2^{20}$ terms of $x_n$ in MATLAB and plotting it, It appears that $displaystylelim_{n to infty}x_{2n+k}$ not exist for $k = 0,1$. Also, I conjecture that $displaystylelim_{n to infty}x_{n cdot 2^m+ k}$ does not exist for any $0 le k le 2^m-1$ and $m in mathbb{N}$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 10:43
1
$begingroup$
I can also conjecture that for any $m in mathbb{N}$ and $0 le k le 2^m-1$, we have $displaystyleliminflimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k)}{3 cdot 2^{m-1}}$ and $displaystylelimsuplimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k) + 1}{3 cdot 2^{m-1}}$ where $r_m(k)$ is the number obtained by reversing the $m$ digit binary representation of $k$, e.g. $r_3(1) = r_3(001_2) = 100_2 = 4$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 11:10
|
show 3 more comments
$begingroup$
Let $v(k)$ be the largest integer $m$ such that $2^m$ divides $k$. As you noted, $dfrac{g(k)}{k} = 2^{-v(k)}$.
So, let $S_n = displaystylesum_{k = 1}^{n}dfrac{g(k)}{k} = sum_{k = 1}^{n}2^{-v(k)}$.
Then, we have:
begin{align*}
S_{2n} &= displaystylesum_{k = 1}^{2n}2^{-v(k)}
\
&= sum_{k = 1}^{n}2^{-v(2k-1)} + sum_{k = 1}^{n}2^{-v(2k)}
\
&= sum_{k = 1}^{n}2^{-0} + sum_{k = 1}^{n}2^{-(1+v(k))}
\
&= sum_{k = 1}^{n}1 + dfrac{1}{2}sum_{k = 1}^{n}2^{-v(k)}
\
&= n + dfrac{1}{2}S_n
end{align*}
Also, $S_{2n+1} = displaystylesum_{k = 1}^{2n+1}2^{-v(k)} = 2^{-v(2n+1)} + sum_{k = 1}^{2n}2^{-v(k)} = 2^{0} + S_{2n} = S_{2n} + 1$.
We can now proceed by induction. Trivially, $S_1 = 1$, so $S_1 > dfrac{2}{3}$ and $S_1 < dfrac{4}{3}$.
Now, suppose that for some integer $n$, we have $dfrac{2n}{3} < S_n < dfrac{2n}{3} + dfrac{2}{3}$.
Then, we have:
$$S_{2n} = dfrac{1}{2}S_n + n > dfrac{1}{2}left(dfrac{2n}{3}right) + n = dfrac{4n}{3} = dfrac{2 cdot 2n}{3}$$
$$S_{2n} = dfrac{1}{2}S_n + n < dfrac{1}{2}left(dfrac{2n}{3}+dfrac{2}{3}right) + n = dfrac{4n}{3} + dfrac{1}{3} < dfrac{2 cdot 2n}{3} + dfrac{2}{3}$$
$$S_{2n+1} = S_{2n}+1 > left(dfrac{4n}{3}right)+1 > dfrac{4n}{3}+dfrac{2}{3} = dfrac{2(2n+1)}{3}$$
$$S_{2n+1} = S_{2n}+1 < left(dfrac{4n}{3}+dfrac{1}{3}right)+1 = dfrac{2(2n+1)}{3} + dfrac{2}{3}.$$
Hence, $dfrac{2 cdot 2n}{3} < S_{2n} < dfrac{2 cdot 2n}{3} + dfrac{2}{3}$ and $dfrac{2(2n+1)}{3} < S_{2n+1} < dfrac{2(2n+1)}{3} + dfrac{2}{3}$.
So by induction, we have that $dfrac{2n}{3} < S_n < dfrac{2n}{3} + dfrac{2}{3}$ for all $n$, as desired.
$endgroup$
Let $v(k)$ be the largest integer $m$ such that $2^m$ divides $k$. As you noted, $dfrac{g(k)}{k} = 2^{-v(k)}$.
So, let $S_n = displaystylesum_{k = 1}^{n}dfrac{g(k)}{k} = sum_{k = 1}^{n}2^{-v(k)}$.
Then, we have:
begin{align*}
S_{2n} &= displaystylesum_{k = 1}^{2n}2^{-v(k)}
\
&= sum_{k = 1}^{n}2^{-v(2k-1)} + sum_{k = 1}^{n}2^{-v(2k)}
\
&= sum_{k = 1}^{n}2^{-0} + sum_{k = 1}^{n}2^{-(1+v(k))}
\
&= sum_{k = 1}^{n}1 + dfrac{1}{2}sum_{k = 1}^{n}2^{-v(k)}
\
&= n + dfrac{1}{2}S_n
end{align*}
Also, $S_{2n+1} = displaystylesum_{k = 1}^{2n+1}2^{-v(k)} = 2^{-v(2n+1)} + sum_{k = 1}^{2n}2^{-v(k)} = 2^{0} + S_{2n} = S_{2n} + 1$.
We can now proceed by induction. Trivially, $S_1 = 1$, so $S_1 > dfrac{2}{3}$ and $S_1 < dfrac{4}{3}$.
Now, suppose that for some integer $n$, we have $dfrac{2n}{3} < S_n < dfrac{2n}{3} + dfrac{2}{3}$.
Then, we have:
$$S_{2n} = dfrac{1}{2}S_n + n > dfrac{1}{2}left(dfrac{2n}{3}right) + n = dfrac{4n}{3} = dfrac{2 cdot 2n}{3}$$
$$S_{2n} = dfrac{1}{2}S_n + n < dfrac{1}{2}left(dfrac{2n}{3}+dfrac{2}{3}right) + n = dfrac{4n}{3} + dfrac{1}{3} < dfrac{2 cdot 2n}{3} + dfrac{2}{3}$$
$$S_{2n+1} = S_{2n}+1 > left(dfrac{4n}{3}right)+1 > dfrac{4n}{3}+dfrac{2}{3} = dfrac{2(2n+1)}{3}$$
$$S_{2n+1} = S_{2n}+1 < left(dfrac{4n}{3}+dfrac{1}{3}right)+1 = dfrac{2(2n+1)}{3} + dfrac{2}{3}.$$
Hence, $dfrac{2 cdot 2n}{3} < S_{2n} < dfrac{2 cdot 2n}{3} + dfrac{2}{3}$ and $dfrac{2(2n+1)}{3} < S_{2n+1} < dfrac{2(2n+1)}{3} + dfrac{2}{3}$.
So by induction, we have that $dfrac{2n}{3} < S_n < dfrac{2n}{3} + dfrac{2}{3}$ for all $n$, as desired.
answered Dec 16 '18 at 2:12
JimmyK4542JimmyK4542
41.2k245107
41.2k245107
1
$begingroup$
So does $lim_{n to infty} S_n-dfrac{2n}{3}$ exist; if so, what is it?
$endgroup$
– marty cohen
Dec 16 '18 at 2:35
1
$begingroup$
If $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right) = L$, then $displaystylelim_{n to infty}left(S_{2n} - tfrac{2 cdot 2n}{3}right) = L$ and $displaystylelim_{n to infty}left(S_{2n+1} - tfrac{2(2n+1)}{3}right) = L$ as well. But since $S_{2n+1}-tfrac{2(2n+1)}{3} = left(S_{2n}-tfrac{2 cdot 2n}{3}right) + dfrac{1}{3}$ holds for all $n$, taking the limit of both sides as $n to infty$ yields, $L = L + tfrac{1}{3}$, a contradiction. Thus, $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right)$ doesn't exist.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:46
1
$begingroup$
So $S_n$ seems to behave differently for even and odd $n$. How about $lim S_{2n+k}-2(2n+k)/3$ for $k=0$ a nd $1$?
$endgroup$
– marty cohen
Dec 16 '18 at 9:52
1
$begingroup$
If we let $x_n = S_n - tfrac{2n}{3}$, then we have the relations $x_{2n} = tfrac{1}{2}x_n$ and $x_{2n+1} = x_{2n}+tfrac{1}{3}$. From generating the first $2^{20}$ terms of $x_n$ in MATLAB and plotting it, It appears that $displaystylelim_{n to infty}x_{2n+k}$ not exist for $k = 0,1$. Also, I conjecture that $displaystylelim_{n to infty}x_{n cdot 2^m+ k}$ does not exist for any $0 le k le 2^m-1$ and $m in mathbb{N}$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 10:43
1
$begingroup$
I can also conjecture that for any $m in mathbb{N}$ and $0 le k le 2^m-1$, we have $displaystyleliminflimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k)}{3 cdot 2^{m-1}}$ and $displaystylelimsuplimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k) + 1}{3 cdot 2^{m-1}}$ where $r_m(k)$ is the number obtained by reversing the $m$ digit binary representation of $k$, e.g. $r_3(1) = r_3(001_2) = 100_2 = 4$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 11:10
|
show 3 more comments
1
$begingroup$
So does $lim_{n to infty} S_n-dfrac{2n}{3}$ exist; if so, what is it?
$endgroup$
– marty cohen
Dec 16 '18 at 2:35
1
$begingroup$
If $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right) = L$, then $displaystylelim_{n to infty}left(S_{2n} - tfrac{2 cdot 2n}{3}right) = L$ and $displaystylelim_{n to infty}left(S_{2n+1} - tfrac{2(2n+1)}{3}right) = L$ as well. But since $S_{2n+1}-tfrac{2(2n+1)}{3} = left(S_{2n}-tfrac{2 cdot 2n}{3}right) + dfrac{1}{3}$ holds for all $n$, taking the limit of both sides as $n to infty$ yields, $L = L + tfrac{1}{3}$, a contradiction. Thus, $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right)$ doesn't exist.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:46
1
$begingroup$
So $S_n$ seems to behave differently for even and odd $n$. How about $lim S_{2n+k}-2(2n+k)/3$ for $k=0$ a nd $1$?
$endgroup$
– marty cohen
Dec 16 '18 at 9:52
1
$begingroup$
If we let $x_n = S_n - tfrac{2n}{3}$, then we have the relations $x_{2n} = tfrac{1}{2}x_n$ and $x_{2n+1} = x_{2n}+tfrac{1}{3}$. From generating the first $2^{20}$ terms of $x_n$ in MATLAB and plotting it, It appears that $displaystylelim_{n to infty}x_{2n+k}$ not exist for $k = 0,1$. Also, I conjecture that $displaystylelim_{n to infty}x_{n cdot 2^m+ k}$ does not exist for any $0 le k le 2^m-1$ and $m in mathbb{N}$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 10:43
1
$begingroup$
I can also conjecture that for any $m in mathbb{N}$ and $0 le k le 2^m-1$, we have $displaystyleliminflimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k)}{3 cdot 2^{m-1}}$ and $displaystylelimsuplimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k) + 1}{3 cdot 2^{m-1}}$ where $r_m(k)$ is the number obtained by reversing the $m$ digit binary representation of $k$, e.g. $r_3(1) = r_3(001_2) = 100_2 = 4$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 11:10
1
1
$begingroup$
So does $lim_{n to infty} S_n-dfrac{2n}{3}$ exist; if so, what is it?
$endgroup$
– marty cohen
Dec 16 '18 at 2:35
$begingroup$
So does $lim_{n to infty} S_n-dfrac{2n}{3}$ exist; if so, what is it?
$endgroup$
– marty cohen
Dec 16 '18 at 2:35
1
1
$begingroup$
If $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right) = L$, then $displaystylelim_{n to infty}left(S_{2n} - tfrac{2 cdot 2n}{3}right) = L$ and $displaystylelim_{n to infty}left(S_{2n+1} - tfrac{2(2n+1)}{3}right) = L$ as well. But since $S_{2n+1}-tfrac{2(2n+1)}{3} = left(S_{2n}-tfrac{2 cdot 2n}{3}right) + dfrac{1}{3}$ holds for all $n$, taking the limit of both sides as $n to infty$ yields, $L = L + tfrac{1}{3}$, a contradiction. Thus, $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right)$ doesn't exist.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:46
$begingroup$
If $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right) = L$, then $displaystylelim_{n to infty}left(S_{2n} - tfrac{2 cdot 2n}{3}right) = L$ and $displaystylelim_{n to infty}left(S_{2n+1} - tfrac{2(2n+1)}{3}right) = L$ as well. But since $S_{2n+1}-tfrac{2(2n+1)}{3} = left(S_{2n}-tfrac{2 cdot 2n}{3}right) + dfrac{1}{3}$ holds for all $n$, taking the limit of both sides as $n to infty$ yields, $L = L + tfrac{1}{3}$, a contradiction. Thus, $displaystylelim_{n to infty}left(S_n - tfrac{2n}{3}right)$ doesn't exist.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:46
1
1
$begingroup$
So $S_n$ seems to behave differently for even and odd $n$. How about $lim S_{2n+k}-2(2n+k)/3$ for $k=0$ a nd $1$?
$endgroup$
– marty cohen
Dec 16 '18 at 9:52
$begingroup$
So $S_n$ seems to behave differently for even and odd $n$. How about $lim S_{2n+k}-2(2n+k)/3$ for $k=0$ a nd $1$?
$endgroup$
– marty cohen
Dec 16 '18 at 9:52
1
1
$begingroup$
If we let $x_n = S_n - tfrac{2n}{3}$, then we have the relations $x_{2n} = tfrac{1}{2}x_n$ and $x_{2n+1} = x_{2n}+tfrac{1}{3}$. From generating the first $2^{20}$ terms of $x_n$ in MATLAB and plotting it, It appears that $displaystylelim_{n to infty}x_{2n+k}$ not exist for $k = 0,1$. Also, I conjecture that $displaystylelim_{n to infty}x_{n cdot 2^m+ k}$ does not exist for any $0 le k le 2^m-1$ and $m in mathbb{N}$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 10:43
$begingroup$
If we let $x_n = S_n - tfrac{2n}{3}$, then we have the relations $x_{2n} = tfrac{1}{2}x_n$ and $x_{2n+1} = x_{2n}+tfrac{1}{3}$. From generating the first $2^{20}$ terms of $x_n$ in MATLAB and plotting it, It appears that $displaystylelim_{n to infty}x_{2n+k}$ not exist for $k = 0,1$. Also, I conjecture that $displaystylelim_{n to infty}x_{n cdot 2^m+ k}$ does not exist for any $0 le k le 2^m-1$ and $m in mathbb{N}$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 10:43
1
1
$begingroup$
I can also conjecture that for any $m in mathbb{N}$ and $0 le k le 2^m-1$, we have $displaystyleliminflimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k)}{3 cdot 2^{m-1}}$ and $displaystylelimsuplimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k) + 1}{3 cdot 2^{m-1}}$ where $r_m(k)$ is the number obtained by reversing the $m$ digit binary representation of $k$, e.g. $r_3(1) = r_3(001_2) = 100_2 = 4$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 11:10
$begingroup$
I can also conjecture that for any $m in mathbb{N}$ and $0 le k le 2^m-1$, we have $displaystyleliminflimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k)}{3 cdot 2^{m-1}}$ and $displaystylelimsuplimits_{n to infty}x_{n cdot 2^m + k} = dfrac{r_m(k) + 1}{3 cdot 2^{m-1}}$ where $r_m(k)$ is the number obtained by reversing the $m$ digit binary representation of $k$, e.g. $r_3(1) = r_3(001_2) = 100_2 = 4$.
$endgroup$
– JimmyK4542
Dec 16 '18 at 11:10
|
show 3 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040201%2flet-gk-be-the-greatest-odd-divisor-of-k-show-that-0-sum-k-1n-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Check the summation of $(1/4)^i$ part again. The 3 should come out in the denominator.
$endgroup$
– Marco
Dec 16 '18 at 2:03
$begingroup$
Your summation is missing a $q_0$ term.
$endgroup$
– JimmyK4542
Dec 16 '18 at 2:15
$begingroup$
@Marco you are right, thank you.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21
$begingroup$
@JimmyK4542 Well, I forgot to say that but I did include it, it is in the part where I add $2^{n−1}$ since half of the numbers are odd.
$endgroup$
– Vmimi
Dec 17 '18 at 4:21