Proving there exists a unique solution close to a point in a non linear system of equations.












2












$begingroup$


Consider the system of non linear equations $$begin{cases}x^2y^3+x^3y^2+x^5y+1=a \ xy^2-2x^2y^4+3x^3y=bend{cases}$$



How can I prove that for a $(a,b)$ close to $(4,2)$ there is a unique solution $x=f(a,b)$, $y=g(a,b)$ close to $(1,1)$?



Note that when $a=4,b=2$ the system has the solution $x=1,y=1$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Inverse function theorem (en.wikipedia.org/wiki/Inverse_function_theorem).
    $endgroup$
    – Jeff
    Dec 15 '18 at 23:22






  • 1




    $begingroup$
    So if I calculate the Jacobian of the vector-valued function of $mathbb{R^2}$ defined by $F(x,y)=begin{pmatrix} x^2y^3+x^3y^2+x^5y+1-a \ xy^2-2x^2y^4+3x^3y-b end{pmatrix}$ And this Jacobian is non-zero in $x=1,y=1$ that would mean that there is a unique solution $x=f(a,b)$, $y=g(a,b)$ close to $(1,1)$?
    $endgroup$
    – codingnight
    Dec 15 '18 at 23:38












  • $begingroup$
    Yes, not only that, but the mappings $f$ and $g$ are infinitely differentiable!
    $endgroup$
    – Jeff
    Dec 17 '18 at 16:56


















2












$begingroup$


Consider the system of non linear equations $$begin{cases}x^2y^3+x^3y^2+x^5y+1=a \ xy^2-2x^2y^4+3x^3y=bend{cases}$$



How can I prove that for a $(a,b)$ close to $(4,2)$ there is a unique solution $x=f(a,b)$, $y=g(a,b)$ close to $(1,1)$?



Note that when $a=4,b=2$ the system has the solution $x=1,y=1$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Inverse function theorem (en.wikipedia.org/wiki/Inverse_function_theorem).
    $endgroup$
    – Jeff
    Dec 15 '18 at 23:22






  • 1




    $begingroup$
    So if I calculate the Jacobian of the vector-valued function of $mathbb{R^2}$ defined by $F(x,y)=begin{pmatrix} x^2y^3+x^3y^2+x^5y+1-a \ xy^2-2x^2y^4+3x^3y-b end{pmatrix}$ And this Jacobian is non-zero in $x=1,y=1$ that would mean that there is a unique solution $x=f(a,b)$, $y=g(a,b)$ close to $(1,1)$?
    $endgroup$
    – codingnight
    Dec 15 '18 at 23:38












  • $begingroup$
    Yes, not only that, but the mappings $f$ and $g$ are infinitely differentiable!
    $endgroup$
    – Jeff
    Dec 17 '18 at 16:56
















2












2








2


1



$begingroup$


Consider the system of non linear equations $$begin{cases}x^2y^3+x^3y^2+x^5y+1=a \ xy^2-2x^2y^4+3x^3y=bend{cases}$$



How can I prove that for a $(a,b)$ close to $(4,2)$ there is a unique solution $x=f(a,b)$, $y=g(a,b)$ close to $(1,1)$?



Note that when $a=4,b=2$ the system has the solution $x=1,y=1$










share|cite|improve this question









$endgroup$




Consider the system of non linear equations $$begin{cases}x^2y^3+x^3y^2+x^5y+1=a \ xy^2-2x^2y^4+3x^3y=bend{cases}$$



How can I prove that for a $(a,b)$ close to $(4,2)$ there is a unique solution $x=f(a,b)$, $y=g(a,b)$ close to $(1,1)$?



Note that when $a=4,b=2$ the system has the solution $x=1,y=1$







multivariable-calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 15 '18 at 23:17









codingnightcodingnight

677




677








  • 1




    $begingroup$
    Inverse function theorem (en.wikipedia.org/wiki/Inverse_function_theorem).
    $endgroup$
    – Jeff
    Dec 15 '18 at 23:22






  • 1




    $begingroup$
    So if I calculate the Jacobian of the vector-valued function of $mathbb{R^2}$ defined by $F(x,y)=begin{pmatrix} x^2y^3+x^3y^2+x^5y+1-a \ xy^2-2x^2y^4+3x^3y-b end{pmatrix}$ And this Jacobian is non-zero in $x=1,y=1$ that would mean that there is a unique solution $x=f(a,b)$, $y=g(a,b)$ close to $(1,1)$?
    $endgroup$
    – codingnight
    Dec 15 '18 at 23:38












  • $begingroup$
    Yes, not only that, but the mappings $f$ and $g$ are infinitely differentiable!
    $endgroup$
    – Jeff
    Dec 17 '18 at 16:56
















  • 1




    $begingroup$
    Inverse function theorem (en.wikipedia.org/wiki/Inverse_function_theorem).
    $endgroup$
    – Jeff
    Dec 15 '18 at 23:22






  • 1




    $begingroup$
    So if I calculate the Jacobian of the vector-valued function of $mathbb{R^2}$ defined by $F(x,y)=begin{pmatrix} x^2y^3+x^3y^2+x^5y+1-a \ xy^2-2x^2y^4+3x^3y-b end{pmatrix}$ And this Jacobian is non-zero in $x=1,y=1$ that would mean that there is a unique solution $x=f(a,b)$, $y=g(a,b)$ close to $(1,1)$?
    $endgroup$
    – codingnight
    Dec 15 '18 at 23:38












  • $begingroup$
    Yes, not only that, but the mappings $f$ and $g$ are infinitely differentiable!
    $endgroup$
    – Jeff
    Dec 17 '18 at 16:56










1




1




$begingroup$
Inverse function theorem (en.wikipedia.org/wiki/Inverse_function_theorem).
$endgroup$
– Jeff
Dec 15 '18 at 23:22




$begingroup$
Inverse function theorem (en.wikipedia.org/wiki/Inverse_function_theorem).
$endgroup$
– Jeff
Dec 15 '18 at 23:22




1




1




$begingroup$
So if I calculate the Jacobian of the vector-valued function of $mathbb{R^2}$ defined by $F(x,y)=begin{pmatrix} x^2y^3+x^3y^2+x^5y+1-a \ xy^2-2x^2y^4+3x^3y-b end{pmatrix}$ And this Jacobian is non-zero in $x=1,y=1$ that would mean that there is a unique solution $x=f(a,b)$, $y=g(a,b)$ close to $(1,1)$?
$endgroup$
– codingnight
Dec 15 '18 at 23:38






$begingroup$
So if I calculate the Jacobian of the vector-valued function of $mathbb{R^2}$ defined by $F(x,y)=begin{pmatrix} x^2y^3+x^3y^2+x^5y+1-a \ xy^2-2x^2y^4+3x^3y-b end{pmatrix}$ And this Jacobian is non-zero in $x=1,y=1$ that would mean that there is a unique solution $x=f(a,b)$, $y=g(a,b)$ close to $(1,1)$?
$endgroup$
– codingnight
Dec 15 '18 at 23:38














$begingroup$
Yes, not only that, but the mappings $f$ and $g$ are infinitely differentiable!
$endgroup$
– Jeff
Dec 17 '18 at 16:56






$begingroup$
Yes, not only that, but the mappings $f$ and $g$ are infinitely differentiable!
$endgroup$
– Jeff
Dec 17 '18 at 16:56












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042066%2fproving-there-exists-a-unique-solution-close-to-a-point-in-a-non-linear-system-o%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042066%2fproving-there-exists-a-unique-solution-close-to-a-point-in-a-non-linear-system-o%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa