Determine the principal strain of a 2x2 matrix












0












$begingroup$


For a 2D problem the strain matrix is given by



$$
begin{bmatrix}
varepsilon_{xx} & varepsilon_{xy} \
varepsilon_{xy} & varepsilon_{yy} \
end{bmatrix}
=
begin{bmatrix}
0 & 0.1 \
0.1 & 0 \
end{bmatrix}
$$



Determine the principal strains



Solution:



First the eigenvalues have to be computed:



begin{align}
det{textbf{A} - lambda mathbb{I}} &= det begin{bmatrix}
- lambda & 0.1 \
0.1 & -lambda
end{bmatrix}
= lambda^2 - 0.1^2 = 0\
lambda_{1,2} &= pm 0.1
end{align}



Then the first eignevector $vec{v}_1$ is determined by



begin{align}
begin{bmatrix}-0.1 & 0.1 \ 0.1 & -0.1 \
end{bmatrix}
begin{pmatrix} x \ y end{pmatrix} &=
begin{pmatrix} 0 \ 0 end{pmatrix} \
-0.1x + 0.1y &= 0 label{eq1} tag{1}\
vec{v}_1 & = frac{1}{sqrt{1^2 + 1^2}} begin{pmatrix} 1 \ 1 end{pmatrix} label{eq2} tag{2}
end{align}



and the second eigenvector is given by



$$
vec{v}_2
begin{pmatrix} -1/sqrt{2} \ 1/sqrt{2} end{pmatrix}
$$



My question



This is certainly a basic algebra question, but how to you get from (1) to (2)?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    For a 2D problem the strain matrix is given by



    $$
    begin{bmatrix}
    varepsilon_{xx} & varepsilon_{xy} \
    varepsilon_{xy} & varepsilon_{yy} \
    end{bmatrix}
    =
    begin{bmatrix}
    0 & 0.1 \
    0.1 & 0 \
    end{bmatrix}
    $$



    Determine the principal strains



    Solution:



    First the eigenvalues have to be computed:



    begin{align}
    det{textbf{A} - lambda mathbb{I}} &= det begin{bmatrix}
    - lambda & 0.1 \
    0.1 & -lambda
    end{bmatrix}
    = lambda^2 - 0.1^2 = 0\
    lambda_{1,2} &= pm 0.1
    end{align}



    Then the first eignevector $vec{v}_1$ is determined by



    begin{align}
    begin{bmatrix}-0.1 & 0.1 \ 0.1 & -0.1 \
    end{bmatrix}
    begin{pmatrix} x \ y end{pmatrix} &=
    begin{pmatrix} 0 \ 0 end{pmatrix} \
    -0.1x + 0.1y &= 0 label{eq1} tag{1}\
    vec{v}_1 & = frac{1}{sqrt{1^2 + 1^2}} begin{pmatrix} 1 \ 1 end{pmatrix} label{eq2} tag{2}
    end{align}



    and the second eigenvector is given by



    $$
    vec{v}_2
    begin{pmatrix} -1/sqrt{2} \ 1/sqrt{2} end{pmatrix}
    $$



    My question



    This is certainly a basic algebra question, but how to you get from (1) to (2)?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      For a 2D problem the strain matrix is given by



      $$
      begin{bmatrix}
      varepsilon_{xx} & varepsilon_{xy} \
      varepsilon_{xy} & varepsilon_{yy} \
      end{bmatrix}
      =
      begin{bmatrix}
      0 & 0.1 \
      0.1 & 0 \
      end{bmatrix}
      $$



      Determine the principal strains



      Solution:



      First the eigenvalues have to be computed:



      begin{align}
      det{textbf{A} - lambda mathbb{I}} &= det begin{bmatrix}
      - lambda & 0.1 \
      0.1 & -lambda
      end{bmatrix}
      = lambda^2 - 0.1^2 = 0\
      lambda_{1,2} &= pm 0.1
      end{align}



      Then the first eignevector $vec{v}_1$ is determined by



      begin{align}
      begin{bmatrix}-0.1 & 0.1 \ 0.1 & -0.1 \
      end{bmatrix}
      begin{pmatrix} x \ y end{pmatrix} &=
      begin{pmatrix} 0 \ 0 end{pmatrix} \
      -0.1x + 0.1y &= 0 label{eq1} tag{1}\
      vec{v}_1 & = frac{1}{sqrt{1^2 + 1^2}} begin{pmatrix} 1 \ 1 end{pmatrix} label{eq2} tag{2}
      end{align}



      and the second eigenvector is given by



      $$
      vec{v}_2
      begin{pmatrix} -1/sqrt{2} \ 1/sqrt{2} end{pmatrix}
      $$



      My question



      This is certainly a basic algebra question, but how to you get from (1) to (2)?










      share|cite|improve this question









      $endgroup$




      For a 2D problem the strain matrix is given by



      $$
      begin{bmatrix}
      varepsilon_{xx} & varepsilon_{xy} \
      varepsilon_{xy} & varepsilon_{yy} \
      end{bmatrix}
      =
      begin{bmatrix}
      0 & 0.1 \
      0.1 & 0 \
      end{bmatrix}
      $$



      Determine the principal strains



      Solution:



      First the eigenvalues have to be computed:



      begin{align}
      det{textbf{A} - lambda mathbb{I}} &= det begin{bmatrix}
      - lambda & 0.1 \
      0.1 & -lambda
      end{bmatrix}
      = lambda^2 - 0.1^2 = 0\
      lambda_{1,2} &= pm 0.1
      end{align}



      Then the first eignevector $vec{v}_1$ is determined by



      begin{align}
      begin{bmatrix}-0.1 & 0.1 \ 0.1 & -0.1 \
      end{bmatrix}
      begin{pmatrix} x \ y end{pmatrix} &=
      begin{pmatrix} 0 \ 0 end{pmatrix} \
      -0.1x + 0.1y &= 0 label{eq1} tag{1}\
      vec{v}_1 & = frac{1}{sqrt{1^2 + 1^2}} begin{pmatrix} 1 \ 1 end{pmatrix} label{eq2} tag{2}
      end{align}



      and the second eigenvector is given by



      $$
      vec{v}_2
      begin{pmatrix} -1/sqrt{2} \ 1/sqrt{2} end{pmatrix}
      $$



      My question



      This is certainly a basic algebra question, but how to you get from (1) to (2)?







      eigenvalues-eigenvectors matrix-equations deformation-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 23 '18 at 14:33









      ecjbecjb

      28718




      28718






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          You have $0.1y-0.1x=0implies x=y$. The eigenvector $begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}x\xend{bmatrix},xinBbb R-{0}$. So one possibility for the eigenvector is when $x=1/sqrt2$, that is,$begin{bmatrix}1/sqrt2\1/sqrt2end{bmatrix}=frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
            $endgroup$
            – ecjb
            Dec 23 '18 at 14:42












          • $begingroup$
            Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
            $endgroup$
            – Shubham Johri
            Dec 23 '18 at 14:46










          • $begingroup$
            Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
            $endgroup$
            – Shubham Johri
            Dec 23 '18 at 14:49














          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050386%2fdetermine-the-principal-strain-of-a-2x2-matrix%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          You have $0.1y-0.1x=0implies x=y$. The eigenvector $begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}x\xend{bmatrix},xinBbb R-{0}$. So one possibility for the eigenvector is when $x=1/sqrt2$, that is,$begin{bmatrix}1/sqrt2\1/sqrt2end{bmatrix}=frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
            $endgroup$
            – ecjb
            Dec 23 '18 at 14:42












          • $begingroup$
            Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
            $endgroup$
            – Shubham Johri
            Dec 23 '18 at 14:46










          • $begingroup$
            Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
            $endgroup$
            – Shubham Johri
            Dec 23 '18 at 14:49


















          1












          $begingroup$

          You have $0.1y-0.1x=0implies x=y$. The eigenvector $begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}x\xend{bmatrix},xinBbb R-{0}$. So one possibility for the eigenvector is when $x=1/sqrt2$, that is,$begin{bmatrix}1/sqrt2\1/sqrt2end{bmatrix}=frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
            $endgroup$
            – ecjb
            Dec 23 '18 at 14:42












          • $begingroup$
            Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
            $endgroup$
            – Shubham Johri
            Dec 23 '18 at 14:46










          • $begingroup$
            Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
            $endgroup$
            – Shubham Johri
            Dec 23 '18 at 14:49
















          1












          1








          1





          $begingroup$

          You have $0.1y-0.1x=0implies x=y$. The eigenvector $begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}x\xend{bmatrix},xinBbb R-{0}$. So one possibility for the eigenvector is when $x=1/sqrt2$, that is,$begin{bmatrix}1/sqrt2\1/sqrt2end{bmatrix}=frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$.






          share|cite|improve this answer











          $endgroup$



          You have $0.1y-0.1x=0implies x=y$. The eigenvector $begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}x\xend{bmatrix},xinBbb R-{0}$. So one possibility for the eigenvector is when $x=1/sqrt2$, that is,$begin{bmatrix}1/sqrt2\1/sqrt2end{bmatrix}=frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 23 '18 at 14:42

























          answered Dec 23 '18 at 14:39









          Shubham JohriShubham Johri

          5,668918




          5,668918












          • $begingroup$
            Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
            $endgroup$
            – ecjb
            Dec 23 '18 at 14:42












          • $begingroup$
            Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
            $endgroup$
            – Shubham Johri
            Dec 23 '18 at 14:46










          • $begingroup$
            Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
            $endgroup$
            – Shubham Johri
            Dec 23 '18 at 14:49




















          • $begingroup$
            Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
            $endgroup$
            – ecjb
            Dec 23 '18 at 14:42












          • $begingroup$
            Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
            $endgroup$
            – Shubham Johri
            Dec 23 '18 at 14:46










          • $begingroup$
            Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
            $endgroup$
            – Shubham Johri
            Dec 23 '18 at 14:49


















          $begingroup$
          Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
          $endgroup$
          – ecjb
          Dec 23 '18 at 14:42






          $begingroup$
          Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
          $endgroup$
          – ecjb
          Dec 23 '18 at 14:42














          $begingroup$
          Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
          $endgroup$
          – Shubham Johri
          Dec 23 '18 at 14:46




          $begingroup$
          Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
          $endgroup$
          – Shubham Johri
          Dec 23 '18 at 14:46












          $begingroup$
          Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
          $endgroup$
          – Shubham Johri
          Dec 23 '18 at 14:49






          $begingroup$
          Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
          $endgroup$
          – Shubham Johri
          Dec 23 '18 at 14:49




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050386%2fdetermine-the-principal-strain-of-a-2x2-matrix%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa