Determine the principal strain of a 2x2 matrix
$begingroup$
For a 2D problem the strain matrix is given by
$$
begin{bmatrix}
varepsilon_{xx} & varepsilon_{xy} \
varepsilon_{xy} & varepsilon_{yy} \
end{bmatrix}
=
begin{bmatrix}
0 & 0.1 \
0.1 & 0 \
end{bmatrix}
$$
Determine the principal strains
Solution:
First the eigenvalues have to be computed:
begin{align}
det{textbf{A} - lambda mathbb{I}} &= det begin{bmatrix}
- lambda & 0.1 \
0.1 & -lambda
end{bmatrix}
= lambda^2 - 0.1^2 = 0\
lambda_{1,2} &= pm 0.1
end{align}
Then the first eignevector $vec{v}_1$ is determined by
begin{align}
begin{bmatrix}-0.1 & 0.1 \ 0.1 & -0.1 \
end{bmatrix}
begin{pmatrix} x \ y end{pmatrix} &=
begin{pmatrix} 0 \ 0 end{pmatrix} \
-0.1x + 0.1y &= 0 label{eq1} tag{1}\
vec{v}_1 & = frac{1}{sqrt{1^2 + 1^2}} begin{pmatrix} 1 \ 1 end{pmatrix} label{eq2} tag{2}
end{align}
and the second eigenvector is given by
$$
vec{v}_2
begin{pmatrix} -1/sqrt{2} \ 1/sqrt{2} end{pmatrix}
$$
My question
This is certainly a basic algebra question, but how to you get from (1) to (2)?
eigenvalues-eigenvectors matrix-equations deformation-theory
$endgroup$
add a comment |
$begingroup$
For a 2D problem the strain matrix is given by
$$
begin{bmatrix}
varepsilon_{xx} & varepsilon_{xy} \
varepsilon_{xy} & varepsilon_{yy} \
end{bmatrix}
=
begin{bmatrix}
0 & 0.1 \
0.1 & 0 \
end{bmatrix}
$$
Determine the principal strains
Solution:
First the eigenvalues have to be computed:
begin{align}
det{textbf{A} - lambda mathbb{I}} &= det begin{bmatrix}
- lambda & 0.1 \
0.1 & -lambda
end{bmatrix}
= lambda^2 - 0.1^2 = 0\
lambda_{1,2} &= pm 0.1
end{align}
Then the first eignevector $vec{v}_1$ is determined by
begin{align}
begin{bmatrix}-0.1 & 0.1 \ 0.1 & -0.1 \
end{bmatrix}
begin{pmatrix} x \ y end{pmatrix} &=
begin{pmatrix} 0 \ 0 end{pmatrix} \
-0.1x + 0.1y &= 0 label{eq1} tag{1}\
vec{v}_1 & = frac{1}{sqrt{1^2 + 1^2}} begin{pmatrix} 1 \ 1 end{pmatrix} label{eq2} tag{2}
end{align}
and the second eigenvector is given by
$$
vec{v}_2
begin{pmatrix} -1/sqrt{2} \ 1/sqrt{2} end{pmatrix}
$$
My question
This is certainly a basic algebra question, but how to you get from (1) to (2)?
eigenvalues-eigenvectors matrix-equations deformation-theory
$endgroup$
add a comment |
$begingroup$
For a 2D problem the strain matrix is given by
$$
begin{bmatrix}
varepsilon_{xx} & varepsilon_{xy} \
varepsilon_{xy} & varepsilon_{yy} \
end{bmatrix}
=
begin{bmatrix}
0 & 0.1 \
0.1 & 0 \
end{bmatrix}
$$
Determine the principal strains
Solution:
First the eigenvalues have to be computed:
begin{align}
det{textbf{A} - lambda mathbb{I}} &= det begin{bmatrix}
- lambda & 0.1 \
0.1 & -lambda
end{bmatrix}
= lambda^2 - 0.1^2 = 0\
lambda_{1,2} &= pm 0.1
end{align}
Then the first eignevector $vec{v}_1$ is determined by
begin{align}
begin{bmatrix}-0.1 & 0.1 \ 0.1 & -0.1 \
end{bmatrix}
begin{pmatrix} x \ y end{pmatrix} &=
begin{pmatrix} 0 \ 0 end{pmatrix} \
-0.1x + 0.1y &= 0 label{eq1} tag{1}\
vec{v}_1 & = frac{1}{sqrt{1^2 + 1^2}} begin{pmatrix} 1 \ 1 end{pmatrix} label{eq2} tag{2}
end{align}
and the second eigenvector is given by
$$
vec{v}_2
begin{pmatrix} -1/sqrt{2} \ 1/sqrt{2} end{pmatrix}
$$
My question
This is certainly a basic algebra question, but how to you get from (1) to (2)?
eigenvalues-eigenvectors matrix-equations deformation-theory
$endgroup$
For a 2D problem the strain matrix is given by
$$
begin{bmatrix}
varepsilon_{xx} & varepsilon_{xy} \
varepsilon_{xy} & varepsilon_{yy} \
end{bmatrix}
=
begin{bmatrix}
0 & 0.1 \
0.1 & 0 \
end{bmatrix}
$$
Determine the principal strains
Solution:
First the eigenvalues have to be computed:
begin{align}
det{textbf{A} - lambda mathbb{I}} &= det begin{bmatrix}
- lambda & 0.1 \
0.1 & -lambda
end{bmatrix}
= lambda^2 - 0.1^2 = 0\
lambda_{1,2} &= pm 0.1
end{align}
Then the first eignevector $vec{v}_1$ is determined by
begin{align}
begin{bmatrix}-0.1 & 0.1 \ 0.1 & -0.1 \
end{bmatrix}
begin{pmatrix} x \ y end{pmatrix} &=
begin{pmatrix} 0 \ 0 end{pmatrix} \
-0.1x + 0.1y &= 0 label{eq1} tag{1}\
vec{v}_1 & = frac{1}{sqrt{1^2 + 1^2}} begin{pmatrix} 1 \ 1 end{pmatrix} label{eq2} tag{2}
end{align}
and the second eigenvector is given by
$$
vec{v}_2
begin{pmatrix} -1/sqrt{2} \ 1/sqrt{2} end{pmatrix}
$$
My question
This is certainly a basic algebra question, but how to you get from (1) to (2)?
eigenvalues-eigenvectors matrix-equations deformation-theory
eigenvalues-eigenvectors matrix-equations deformation-theory
asked Dec 23 '18 at 14:33
ecjbecjb
28718
28718
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You have $0.1y-0.1x=0implies x=y$. The eigenvector $begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}x\xend{bmatrix},xinBbb R-{0}$. So one possibility for the eigenvector is when $x=1/sqrt2$, that is,$begin{bmatrix}1/sqrt2\1/sqrt2end{bmatrix}=frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$.
$endgroup$
$begingroup$
Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
$endgroup$
– ecjb
Dec 23 '18 at 14:42
$begingroup$
Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:46
$begingroup$
Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:49
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050386%2fdetermine-the-principal-strain-of-a-2x2-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have $0.1y-0.1x=0implies x=y$. The eigenvector $begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}x\xend{bmatrix},xinBbb R-{0}$. So one possibility for the eigenvector is when $x=1/sqrt2$, that is,$begin{bmatrix}1/sqrt2\1/sqrt2end{bmatrix}=frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$.
$endgroup$
$begingroup$
Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
$endgroup$
– ecjb
Dec 23 '18 at 14:42
$begingroup$
Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:46
$begingroup$
Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:49
add a comment |
$begingroup$
You have $0.1y-0.1x=0implies x=y$. The eigenvector $begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}x\xend{bmatrix},xinBbb R-{0}$. So one possibility for the eigenvector is when $x=1/sqrt2$, that is,$begin{bmatrix}1/sqrt2\1/sqrt2end{bmatrix}=frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$.
$endgroup$
$begingroup$
Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
$endgroup$
– ecjb
Dec 23 '18 at 14:42
$begingroup$
Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:46
$begingroup$
Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:49
add a comment |
$begingroup$
You have $0.1y-0.1x=0implies x=y$. The eigenvector $begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}x\xend{bmatrix},xinBbb R-{0}$. So one possibility for the eigenvector is when $x=1/sqrt2$, that is,$begin{bmatrix}1/sqrt2\1/sqrt2end{bmatrix}=frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$.
$endgroup$
You have $0.1y-0.1x=0implies x=y$. The eigenvector $begin{bmatrix}x\yend{bmatrix}=begin{bmatrix}x\xend{bmatrix},xinBbb R-{0}$. So one possibility for the eigenvector is when $x=1/sqrt2$, that is,$begin{bmatrix}1/sqrt2\1/sqrt2end{bmatrix}=frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$.
edited Dec 23 '18 at 14:42
answered Dec 23 '18 at 14:39
Shubham JohriShubham Johri
5,668918
5,668918
$begingroup$
Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
$endgroup$
– ecjb
Dec 23 '18 at 14:42
$begingroup$
Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:46
$begingroup$
Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:49
add a comment |
$begingroup$
Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
$endgroup$
– ecjb
Dec 23 '18 at 14:42
$begingroup$
Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:46
$begingroup$
Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:49
$begingroup$
Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
$endgroup$
– ecjb
Dec 23 '18 at 14:42
$begingroup$
Thank you for your answer @Shubham Johri. Now where does the $frac{1}{sqrt{1^2+1^2}}$ come from?
$endgroup$
– ecjb
Dec 23 '18 at 14:42
$begingroup$
Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:46
$begingroup$
Note that if $bf v$ is an eigenvector of $A$ corresponding to eigenvalue $lambda$, $kbf v$$(kne0)$ is also an eigenvector of $A$ corresponding to the same eigenvalue. This is because $Amathbf v=lambdamathbf vimplies A(kmathbf v)=lambda(kmathbf v)$.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:46
$begingroup$
Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:49
$begingroup$
Take $x=1$ to get the eigenvector $mathbf v=(1,1)^T$. The norm of $mathbf v$ is $|mathbf v|=sqrt{1^2+1^2}$, so if you divide $bf v$ by $|mathbf v|=sqrt2$, you will get the unit vector $frac1{sqrt2}begin{bmatrix}1\1end{bmatrix}$ which is also an eigenvector corresponding to the same eigenvalue.
$endgroup$
– Shubham Johri
Dec 23 '18 at 14:49
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050386%2fdetermine-the-principal-strain-of-a-2x2-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown