Integral problem about probability
$begingroup$
Let $h(x)=frac{f'(x)^2}{f(x)},$ and $f(x)$ is the probability density function of r.v. $X$.
If $int_{-infty}^{infty}(1+x^2)h(x)dx<infty$, do we have $int_{-infty}^{infty} xh(x)dx=0$?
Many thanks
real-analysis calculus probability integration probability-theory
$endgroup$
add a comment |
$begingroup$
Let $h(x)=frac{f'(x)^2}{f(x)},$ and $f(x)$ is the probability density function of r.v. $X$.
If $int_{-infty}^{infty}(1+x^2)h(x)dx<infty$, do we have $int_{-infty}^{infty} xh(x)dx=0$?
Many thanks
real-analysis calculus probability integration probability-theory
$endgroup$
1
$begingroup$
I am not sure whether one could say an indefinite integral is bounded or not, i.e. I suppose there are some borders of integration missing.
$endgroup$
– mrtaurho
Dec 23 '18 at 12:49
1
$begingroup$
The integration could be regarded as expectation. I should put the borders from $-infty$ to $infty$
$endgroup$
– FoxFlu
Dec 23 '18 at 12:54
$begingroup$
Note that $int_{-infty}^infty h(x),mathrm{d}xgt0$. Furthermore, if $f(x)$ is a probability density function, then $f(x-1)$ is also. If $int_{-infty}^infty x h(x),mathrm{d}x=0$, then $int_{-infty}^infty x h(x-1),mathrm{d}x=int_{-infty}^infty h(x),mathrm{d}xgt0$. Thus, it is not true for all probability densities.
$endgroup$
– robjohn♦
Dec 23 '18 at 13:39
$begingroup$
For exponential distribution with pdf $f(x)=e^{-x}$ ($x>0$) we get $h(x)=f(x)$ and $int_{-infty}^infty xh(x)dx=1$.
$endgroup$
– NCh
Dec 24 '18 at 3:25
add a comment |
$begingroup$
Let $h(x)=frac{f'(x)^2}{f(x)},$ and $f(x)$ is the probability density function of r.v. $X$.
If $int_{-infty}^{infty}(1+x^2)h(x)dx<infty$, do we have $int_{-infty}^{infty} xh(x)dx=0$?
Many thanks
real-analysis calculus probability integration probability-theory
$endgroup$
Let $h(x)=frac{f'(x)^2}{f(x)},$ and $f(x)$ is the probability density function of r.v. $X$.
If $int_{-infty}^{infty}(1+x^2)h(x)dx<infty$, do we have $int_{-infty}^{infty} xh(x)dx=0$?
Many thanks
real-analysis calculus probability integration probability-theory
real-analysis calculus probability integration probability-theory
edited Dec 23 '18 at 12:55
FoxFlu
asked Dec 23 '18 at 12:47
FoxFluFoxFlu
12
12
1
$begingroup$
I am not sure whether one could say an indefinite integral is bounded or not, i.e. I suppose there are some borders of integration missing.
$endgroup$
– mrtaurho
Dec 23 '18 at 12:49
1
$begingroup$
The integration could be regarded as expectation. I should put the borders from $-infty$ to $infty$
$endgroup$
– FoxFlu
Dec 23 '18 at 12:54
$begingroup$
Note that $int_{-infty}^infty h(x),mathrm{d}xgt0$. Furthermore, if $f(x)$ is a probability density function, then $f(x-1)$ is also. If $int_{-infty}^infty x h(x),mathrm{d}x=0$, then $int_{-infty}^infty x h(x-1),mathrm{d}x=int_{-infty}^infty h(x),mathrm{d}xgt0$. Thus, it is not true for all probability densities.
$endgroup$
– robjohn♦
Dec 23 '18 at 13:39
$begingroup$
For exponential distribution with pdf $f(x)=e^{-x}$ ($x>0$) we get $h(x)=f(x)$ and $int_{-infty}^infty xh(x)dx=1$.
$endgroup$
– NCh
Dec 24 '18 at 3:25
add a comment |
1
$begingroup$
I am not sure whether one could say an indefinite integral is bounded or not, i.e. I suppose there are some borders of integration missing.
$endgroup$
– mrtaurho
Dec 23 '18 at 12:49
1
$begingroup$
The integration could be regarded as expectation. I should put the borders from $-infty$ to $infty$
$endgroup$
– FoxFlu
Dec 23 '18 at 12:54
$begingroup$
Note that $int_{-infty}^infty h(x),mathrm{d}xgt0$. Furthermore, if $f(x)$ is a probability density function, then $f(x-1)$ is also. If $int_{-infty}^infty x h(x),mathrm{d}x=0$, then $int_{-infty}^infty x h(x-1),mathrm{d}x=int_{-infty}^infty h(x),mathrm{d}xgt0$. Thus, it is not true for all probability densities.
$endgroup$
– robjohn♦
Dec 23 '18 at 13:39
$begingroup$
For exponential distribution with pdf $f(x)=e^{-x}$ ($x>0$) we get $h(x)=f(x)$ and $int_{-infty}^infty xh(x)dx=1$.
$endgroup$
– NCh
Dec 24 '18 at 3:25
1
1
$begingroup$
I am not sure whether one could say an indefinite integral is bounded or not, i.e. I suppose there are some borders of integration missing.
$endgroup$
– mrtaurho
Dec 23 '18 at 12:49
$begingroup$
I am not sure whether one could say an indefinite integral is bounded or not, i.e. I suppose there are some borders of integration missing.
$endgroup$
– mrtaurho
Dec 23 '18 at 12:49
1
1
$begingroup$
The integration could be regarded as expectation. I should put the borders from $-infty$ to $infty$
$endgroup$
– FoxFlu
Dec 23 '18 at 12:54
$begingroup$
The integration could be regarded as expectation. I should put the borders from $-infty$ to $infty$
$endgroup$
– FoxFlu
Dec 23 '18 at 12:54
$begingroup$
Note that $int_{-infty}^infty h(x),mathrm{d}xgt0$. Furthermore, if $f(x)$ is a probability density function, then $f(x-1)$ is also. If $int_{-infty}^infty x h(x),mathrm{d}x=0$, then $int_{-infty}^infty x h(x-1),mathrm{d}x=int_{-infty}^infty h(x),mathrm{d}xgt0$. Thus, it is not true for all probability densities.
$endgroup$
– robjohn♦
Dec 23 '18 at 13:39
$begingroup$
Note that $int_{-infty}^infty h(x),mathrm{d}xgt0$. Furthermore, if $f(x)$ is a probability density function, then $f(x-1)$ is also. If $int_{-infty}^infty x h(x),mathrm{d}x=0$, then $int_{-infty}^infty x h(x-1),mathrm{d}x=int_{-infty}^infty h(x),mathrm{d}xgt0$. Thus, it is not true for all probability densities.
$endgroup$
– robjohn♦
Dec 23 '18 at 13:39
$begingroup$
For exponential distribution with pdf $f(x)=e^{-x}$ ($x>0$) we get $h(x)=f(x)$ and $int_{-infty}^infty xh(x)dx=1$.
$endgroup$
– NCh
Dec 24 '18 at 3:25
$begingroup$
For exponential distribution with pdf $f(x)=e^{-x}$ ($x>0$) we get $h(x)=f(x)$ and $int_{-infty}^infty xh(x)dx=1$.
$endgroup$
– NCh
Dec 24 '18 at 3:25
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050320%2fintegral-problem-about-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050320%2fintegral-problem-about-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I am not sure whether one could say an indefinite integral is bounded or not, i.e. I suppose there are some borders of integration missing.
$endgroup$
– mrtaurho
Dec 23 '18 at 12:49
1
$begingroup$
The integration could be regarded as expectation. I should put the borders from $-infty$ to $infty$
$endgroup$
– FoxFlu
Dec 23 '18 at 12:54
$begingroup$
Note that $int_{-infty}^infty h(x),mathrm{d}xgt0$. Furthermore, if $f(x)$ is a probability density function, then $f(x-1)$ is also. If $int_{-infty}^infty x h(x),mathrm{d}x=0$, then $int_{-infty}^infty x h(x-1),mathrm{d}x=int_{-infty}^infty h(x),mathrm{d}xgt0$. Thus, it is not true for all probability densities.
$endgroup$
– robjohn♦
Dec 23 '18 at 13:39
$begingroup$
For exponential distribution with pdf $f(x)=e^{-x}$ ($x>0$) we get $h(x)=f(x)$ and $int_{-infty}^infty xh(x)dx=1$.
$endgroup$
– NCh
Dec 24 '18 at 3:25