Isomorphic ring $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$
up vote
1
down vote
favorite
I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem
$mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$
So I choose $I = (x), J = (x^2 + 1)$
What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)
Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?
abstract-algebra ring-theory ideals ring-isomorphism
add a comment |
up vote
1
down vote
favorite
I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem
$mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$
So I choose $I = (x), J = (x^2 + 1)$
What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)
Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?
abstract-algebra ring-theory ideals ring-isomorphism
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem
$mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$
So I choose $I = (x), J = (x^2 + 1)$
What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)
Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?
abstract-algebra ring-theory ideals ring-isomorphism
I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem
$mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$
So I choose $I = (x), J = (x^2 + 1)$
What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)
Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?
abstract-algebra ring-theory ideals ring-isomorphism
abstract-algebra ring-theory ideals ring-isomorphism
edited Nov 21 at 12:50
Zvi
4,335429
4,335429
asked Nov 21 at 11:29
Hans
637
637
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
To find an explicit isomorphism, we note that
$$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
$$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
$$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
$$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
$$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
and
$$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007596%2fisomorphic-ring-mathbbqx-x3x-cong-mathbbq-times-mathbbqx-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
To find an explicit isomorphism, we note that
$$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
$$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
$$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
$$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
$$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
and
$$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
add a comment |
up vote
2
down vote
To find an explicit isomorphism, we note that
$$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
$$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
$$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
$$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
$$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
and
$$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
add a comment |
up vote
2
down vote
up vote
2
down vote
To find an explicit isomorphism, we note that
$$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
$$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
$$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
$$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
$$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
and
$$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
To find an explicit isomorphism, we note that
$$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
$$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
$$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
$$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
$$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
and
$$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
answered Nov 21 at 11:48
Zvi
4,335429
4,335429
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007596%2fisomorphic-ring-mathbbqx-x3x-cong-mathbbq-times-mathbbqx-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown