Looking for closed form solutions to linear ordinary differential equations with time dependent coefficients.
up vote
0
down vote
favorite
Let $a in {mathbb C}$ and $bin {mathbb C}$ and let $nge 1$ be an integer.
Consider a following family of Ordinary Differential Equations (ODEs). We have:
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{n^2}{4} (a-b)^4 frac{P_n^{(2n-2)}(x)}{(x+a)^2(x+b)^{2n+2}} cdot y(x)=0
end{equation}
where $P_n^{(2n-2)}(x)$ are a polynomials of order $2n-2$ in $x$ which read:
begin{eqnarray}
P_n^{(2n-2)}(x) = left{
begin{array}{rr}
1 & mbox{if $quad n=1$}\
(a+b+2 x)^2 & mbox{if $quad n=2$}\
(a^2+ a b+b^2+3(a+b)x+3 x^2)^2 & mbox{if $quad n=3$}\
(a+b+2 x)^2(a^2+b^2+2(a+b)x+2 x^2)^2 & mbox{if $quad n=4$}\
vdots
end{array}
right.
end{eqnarray}
as a matter of fact we have:
begin{equation}
P_n^{(2n-2)}(x) =frac{((x+a)^n - (x+b)^n)^2}{(a-b)^2}
end{equation}
for $n=1,2,cdots$.
Now by using the algorithm described in my answer to How do I find a change of variables that reduces a linear 2nd order ODE to the Gaussian hypergeometric differential equation? I have found the fundamental solutions to those ODEs. They read:
begin{eqnarray}
y(x) = C_1 cdot sqrt{frac{(x+b)^{n+1}}{(x+a)^{n-1}}}W_{frac{1}{2}, {mathfrak A}_n}[left( frac{x+a}{x+b}right)^n] +
C_2 cdot sqrt{frac{(x+b)^{n+1}}{(x+a)^{n-1}}}M_{frac{1}{2}, {mathfrak A}_n}[left( frac{x+a}{x+b}right)^n]
end{eqnarray}
Here the constants read ${mathfrak A}_n = sqrt{1+n^2}/(2 n)$ for $n=1,2,cdots$ and $W$ and $M$ are the Whittaker functions https://en.wikipedia.org/wiki/Whittaker_function .
Now the following Mathematica code "proves" the result:
In[322]:= a =.; b =.; x =.;
Table[FullSimplify[(D[#, {x, 2}] -
n^2/4 ( (a - b)^2 ((x + a)^n - (x + b)^n)^2)/((a + x)^2 (b +
x)^(2 n + 2)) #) & /@ {Sqrt[(b + x)^(n + 1)]/
Sqrt[((a + x)^(n - 1))]
WhittakerW[1/2, Sqrt[1 + n^2]/(2 n), ((x + a)/(x + b))^n],
Sqrt[(b + x)^(n + 1)]/ Sqrt[((a + x)^(n - 1))]
WhittakerM[1/2, Sqrt[1 + n^2]/(2 n), ((x + a)/(x + b))^n]}], {n,
1, 6}]
Out[323]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}
Now I would love to know what other linear second order ODEs of the form above can be mapped onto hypergeometric functions by a suitable substitution.
differential-equations special-functions
add a comment |
up vote
0
down vote
favorite
Let $a in {mathbb C}$ and $bin {mathbb C}$ and let $nge 1$ be an integer.
Consider a following family of Ordinary Differential Equations (ODEs). We have:
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{n^2}{4} (a-b)^4 frac{P_n^{(2n-2)}(x)}{(x+a)^2(x+b)^{2n+2}} cdot y(x)=0
end{equation}
where $P_n^{(2n-2)}(x)$ are a polynomials of order $2n-2$ in $x$ which read:
begin{eqnarray}
P_n^{(2n-2)}(x) = left{
begin{array}{rr}
1 & mbox{if $quad n=1$}\
(a+b+2 x)^2 & mbox{if $quad n=2$}\
(a^2+ a b+b^2+3(a+b)x+3 x^2)^2 & mbox{if $quad n=3$}\
(a+b+2 x)^2(a^2+b^2+2(a+b)x+2 x^2)^2 & mbox{if $quad n=4$}\
vdots
end{array}
right.
end{eqnarray}
as a matter of fact we have:
begin{equation}
P_n^{(2n-2)}(x) =frac{((x+a)^n - (x+b)^n)^2}{(a-b)^2}
end{equation}
for $n=1,2,cdots$.
Now by using the algorithm described in my answer to How do I find a change of variables that reduces a linear 2nd order ODE to the Gaussian hypergeometric differential equation? I have found the fundamental solutions to those ODEs. They read:
begin{eqnarray}
y(x) = C_1 cdot sqrt{frac{(x+b)^{n+1}}{(x+a)^{n-1}}}W_{frac{1}{2}, {mathfrak A}_n}[left( frac{x+a}{x+b}right)^n] +
C_2 cdot sqrt{frac{(x+b)^{n+1}}{(x+a)^{n-1}}}M_{frac{1}{2}, {mathfrak A}_n}[left( frac{x+a}{x+b}right)^n]
end{eqnarray}
Here the constants read ${mathfrak A}_n = sqrt{1+n^2}/(2 n)$ for $n=1,2,cdots$ and $W$ and $M$ are the Whittaker functions https://en.wikipedia.org/wiki/Whittaker_function .
Now the following Mathematica code "proves" the result:
In[322]:= a =.; b =.; x =.;
Table[FullSimplify[(D[#, {x, 2}] -
n^2/4 ( (a - b)^2 ((x + a)^n - (x + b)^n)^2)/((a + x)^2 (b +
x)^(2 n + 2)) #) & /@ {Sqrt[(b + x)^(n + 1)]/
Sqrt[((a + x)^(n - 1))]
WhittakerW[1/2, Sqrt[1 + n^2]/(2 n), ((x + a)/(x + b))^n],
Sqrt[(b + x)^(n + 1)]/ Sqrt[((a + x)^(n - 1))]
WhittakerM[1/2, Sqrt[1 + n^2]/(2 n), ((x + a)/(x + b))^n]}], {n,
1, 6}]
Out[323]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}
Now I would love to know what other linear second order ODEs of the form above can be mapped onto hypergeometric functions by a suitable substitution.
differential-equations special-functions
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $a in {mathbb C}$ and $bin {mathbb C}$ and let $nge 1$ be an integer.
Consider a following family of Ordinary Differential Equations (ODEs). We have:
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{n^2}{4} (a-b)^4 frac{P_n^{(2n-2)}(x)}{(x+a)^2(x+b)^{2n+2}} cdot y(x)=0
end{equation}
where $P_n^{(2n-2)}(x)$ are a polynomials of order $2n-2$ in $x$ which read:
begin{eqnarray}
P_n^{(2n-2)}(x) = left{
begin{array}{rr}
1 & mbox{if $quad n=1$}\
(a+b+2 x)^2 & mbox{if $quad n=2$}\
(a^2+ a b+b^2+3(a+b)x+3 x^2)^2 & mbox{if $quad n=3$}\
(a+b+2 x)^2(a^2+b^2+2(a+b)x+2 x^2)^2 & mbox{if $quad n=4$}\
vdots
end{array}
right.
end{eqnarray}
as a matter of fact we have:
begin{equation}
P_n^{(2n-2)}(x) =frac{((x+a)^n - (x+b)^n)^2}{(a-b)^2}
end{equation}
for $n=1,2,cdots$.
Now by using the algorithm described in my answer to How do I find a change of variables that reduces a linear 2nd order ODE to the Gaussian hypergeometric differential equation? I have found the fundamental solutions to those ODEs. They read:
begin{eqnarray}
y(x) = C_1 cdot sqrt{frac{(x+b)^{n+1}}{(x+a)^{n-1}}}W_{frac{1}{2}, {mathfrak A}_n}[left( frac{x+a}{x+b}right)^n] +
C_2 cdot sqrt{frac{(x+b)^{n+1}}{(x+a)^{n-1}}}M_{frac{1}{2}, {mathfrak A}_n}[left( frac{x+a}{x+b}right)^n]
end{eqnarray}
Here the constants read ${mathfrak A}_n = sqrt{1+n^2}/(2 n)$ for $n=1,2,cdots$ and $W$ and $M$ are the Whittaker functions https://en.wikipedia.org/wiki/Whittaker_function .
Now the following Mathematica code "proves" the result:
In[322]:= a =.; b =.; x =.;
Table[FullSimplify[(D[#, {x, 2}] -
n^2/4 ( (a - b)^2 ((x + a)^n - (x + b)^n)^2)/((a + x)^2 (b +
x)^(2 n + 2)) #) & /@ {Sqrt[(b + x)^(n + 1)]/
Sqrt[((a + x)^(n - 1))]
WhittakerW[1/2, Sqrt[1 + n^2]/(2 n), ((x + a)/(x + b))^n],
Sqrt[(b + x)^(n + 1)]/ Sqrt[((a + x)^(n - 1))]
WhittakerM[1/2, Sqrt[1 + n^2]/(2 n), ((x + a)/(x + b))^n]}], {n,
1, 6}]
Out[323]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}
Now I would love to know what other linear second order ODEs of the form above can be mapped onto hypergeometric functions by a suitable substitution.
differential-equations special-functions
Let $a in {mathbb C}$ and $bin {mathbb C}$ and let $nge 1$ be an integer.
Consider a following family of Ordinary Differential Equations (ODEs). We have:
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{n^2}{4} (a-b)^4 frac{P_n^{(2n-2)}(x)}{(x+a)^2(x+b)^{2n+2}} cdot y(x)=0
end{equation}
where $P_n^{(2n-2)}(x)$ are a polynomials of order $2n-2$ in $x$ which read:
begin{eqnarray}
P_n^{(2n-2)}(x) = left{
begin{array}{rr}
1 & mbox{if $quad n=1$}\
(a+b+2 x)^2 & mbox{if $quad n=2$}\
(a^2+ a b+b^2+3(a+b)x+3 x^2)^2 & mbox{if $quad n=3$}\
(a+b+2 x)^2(a^2+b^2+2(a+b)x+2 x^2)^2 & mbox{if $quad n=4$}\
vdots
end{array}
right.
end{eqnarray}
as a matter of fact we have:
begin{equation}
P_n^{(2n-2)}(x) =frac{((x+a)^n - (x+b)^n)^2}{(a-b)^2}
end{equation}
for $n=1,2,cdots$.
Now by using the algorithm described in my answer to How do I find a change of variables that reduces a linear 2nd order ODE to the Gaussian hypergeometric differential equation? I have found the fundamental solutions to those ODEs. They read:
begin{eqnarray}
y(x) = C_1 cdot sqrt{frac{(x+b)^{n+1}}{(x+a)^{n-1}}}W_{frac{1}{2}, {mathfrak A}_n}[left( frac{x+a}{x+b}right)^n] +
C_2 cdot sqrt{frac{(x+b)^{n+1}}{(x+a)^{n-1}}}M_{frac{1}{2}, {mathfrak A}_n}[left( frac{x+a}{x+b}right)^n]
end{eqnarray}
Here the constants read ${mathfrak A}_n = sqrt{1+n^2}/(2 n)$ for $n=1,2,cdots$ and $W$ and $M$ are the Whittaker functions https://en.wikipedia.org/wiki/Whittaker_function .
Now the following Mathematica code "proves" the result:
In[322]:= a =.; b =.; x =.;
Table[FullSimplify[(D[#, {x, 2}] -
n^2/4 ( (a - b)^2 ((x + a)^n - (x + b)^n)^2)/((a + x)^2 (b +
x)^(2 n + 2)) #) & /@ {Sqrt[(b + x)^(n + 1)]/
Sqrt[((a + x)^(n - 1))]
WhittakerW[1/2, Sqrt[1 + n^2]/(2 n), ((x + a)/(x + b))^n],
Sqrt[(b + x)^(n + 1)]/ Sqrt[((a + x)^(n - 1))]
WhittakerM[1/2, Sqrt[1 + n^2]/(2 n), ((x + a)/(x + b))^n]}], {n,
1, 6}]
Out[323]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}
Now I would love to know what other linear second order ODEs of the form above can be mapped onto hypergeometric functions by a suitable substitution.
differential-equations special-functions
differential-equations special-functions
edited Aug 31 at 10:48
asked Aug 30 at 16:17
Przemo
4,1271928
4,1271928
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
up vote
0
down vote
By applying the same algorithm to the Bessel functions we get the following answer:
begin{equation}
frac{d^2 y(x)}{d x^2} -n^2(A b-a B)^2 frac{left(-B^{2 n}(A x+a)^{2n}+A^{2 n}(B x+b)^{2 n}right)}{B^{2 n}(A x+a)^2(B x+b)^{2n+2}}cdot y(x)=0
end{equation}
is solved by
begin{eqnarray}
&&y(x)=\
&&C_1cdot sqrt{(A x+a)(B x+b)} J_{frac{sqrt{1+(A/B)^{2 n}4 n^2}}{2 n}}left[(frac{A x+a}{B x+b})^nright]+\
&&
C_2cdot sqrt{(A x+a)(B x+b)} J_{-frac{sqrt{1+(A/B)^{2 n}4 n^2}}{2 n}}left[(frac{A x+a}{B x+b})^nright]
end{eqnarray}
The result is checked by the following piece of code:
In[115]:= Table[
FullSimplify[(D[#, {x, 2}] - (
n^2 (A b - a B)^2 (-B^(2 n) (A x + a)^(2 n) +
A^(2 n) (B x + b)^(2 n)))/(
B^(2 n) (a + A x)^2 (b + B x)^(2 n + 2)) #) & /@ {Sqrt[(a +
A x) (b + B x)]
BesselJ[Sqrt[1 + (A/B)^(2 n) 4 n^2]/(
2 n), ((A x + a)/(B x + b))^n],
Sqrt[(a + A x) (b + B x)]
BesselJ[-(Sqrt[1 + (A/B)^(2 n) 4 n^2]/(2 n)), ((A x + a)/(
B x + b))^n]}], {n, 1, 6}]
Out[115]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}
add a comment |
up vote
0
down vote
Let $a,b,A,B in {mathbb N}$ subject to $(a-b)^2 + (A-B)^2 > 0$.
Now let $a_1,a_2,b_1 in {mathbb R}$ and define:
begin{eqnarray}
P_0 &:=& a^2 (a_1-a_2-1) (a_1-a_2+1)+2 a b (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+b^2 (b_1-2) b_1 \
P_1 &:=& 2 (A (a (a_1-a_2-1) (a_1-a_2+1)+b (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1))+B (a (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+b
(b_1-2) b_1)) \
P_2 &:=& A^2 (a_1-a_2-1) (a_1-a_2+1)+2 A B (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+B^2 (b_1-2) b_1
end{eqnarray}
Then the fundamental solutions to the following ODE:
begin{eqnarray}
frac{d^2 y(x)}{d x^2} - (a B-A b)^2frac{left(P_0 + P_1 x + P_2 x^2right)}{4 (a+A x)^2 (b+B x)^2 (a-b+ (A-B)x)^2} cdot y(x) = 0
end{eqnarray}
have the following form:
begin{eqnarray}
&&y_1(x) := (a+A x)^{b_1/2} (b+B x)^{frac{1}{2} (-a_1-a_2+1)} (a+x (A-B)-b)^{frac{1}{2} (a_1+a_2-b_1+1)} , _2F_1left(a_1,a_2;b_1;frac{a+A x}{b+B x}right)\
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!y_2(x) := (a+A x)^{1-frac{b_1}{2}} (b+B x)^{frac{1}{2} (-a_1-a_2-1)+b_1} (a+x (A-B)-b)^{frac{1}{2} (a_1+a_2-b_1+1)} ,
_2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+A x}{b+B x}right)
end{eqnarray}
The following Mathematica code verifies the result:
In[1109]:= A =.; B =.; a =.; b =.; Clear[y1]; Clear[y2]; Clear[v]; x =.;
{A, B, a, b} = RandomInteger[{0, 20}, 4];
v[x_] := (-A b + a B)^2/(
4 (a + A x)^2 (a - b + A x - B x)^2 (b +
B x)^2) (a^2 (-1 + a1 - a2) (1 + a1 - a2) + b^2 (-2 + b1) b1 +
2 a b (2 a1 a2 + b1 - a1 b1 - a2 b1) +
2 (A (a (-1 + a1 - a2) (1 + a1 - a2) +
b (2 a1 a2 + b1 - a1 b1 - a2 b1)) +
B (b (-2 + b1) b1 +
a (2 a1 a2 + b1 - a1 b1 - a2 b1))) x + (A^2 (-1 + a1 -
a2) (1 + a1 - a2) + B^2 (-2 + b1) b1 +
2 A B (2 a1 a2 + b1 - a1 b1 - a2 b1)) x^2);
y1[x_] := (a + A x)^(b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (1 - a1 - a2))
Hypergeometric2F1[a1, a2, b1, (A x + a)^1/(B x + b)^1];
y2[x_] := (a + A x)^(1 - b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (-1 - a1 - a2) + b1)
Hypergeometric2F1[1 + a1 - b1, 1 + a2 - b1,
2 - b1, (A x + a)^1/(B x + b)^1];
FullSimplify[(D[#, {x, 2}] - v[x] #) & /@ {y1[x], y2[x]}]
Out[1114]= {0, 0}
Update 0: The result above can be used to solve the following inverse problem.
Let $A=B=1$. Now let $a,b in {mathbb N}$ and let $P_0,P_1,P_2 in {mathbb N}$ subject to $P_0^2 + P_1^2 + P_2^2 > 0$. Then there always exist certain $a_1,a_2,b_1 in {mathbb R}$ such that the functions $y_{1,2}(x)$ above are fundamental solutions to the following ODE:
begin{eqnarray}
frac{d^2 y(x)}{d x^2} - frac{(P_0+P_1 x+P_2 x^2)}{(x+a)^2(x+b)^2} cdot y(x)=0
end{eqnarray}
Indeed if we set $A=B=1$ and then if we set $a,b in {mathbb N}$ in the top three equations defining $P_0,P_1,P_2$ above we can always solve those equations for $a_1,a_2,b_1$. Here is the Mathematica code that accomplishes that:
In[1473]:= {A, B} = {1, 1}; Clear[y1]; Clear[y2];
y1[x_] := (a + A x)^(b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (1 - a1 - a2))
Hypergeometric2F1[a1, a2, b1, (A x + a)^1/(B x + b)^1];
y2[x_] := (a + A x)^(1 - b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (-1 - a1 - a2) + b1)
Hypergeometric2F1[1 + a1 - b1, 1 + a2 - b1,
2 - b1, (A x + a)^1/(B x + b)^1];
{a, b} = RandomInteger[{0, 10}, 2];
{P0, P1, P2} = RandomInteger[{0, 10}, 3];
a1 =.; a2 =.; b1 =.;
subst = FullSimplify[
Solve[{a^2 (-1 + a1 - a2) (1 + a1 - a2) + b^2 (-2 + b1) b1 +
2 a b (2 a1 a2 + b1 - a1 b1 - a2 b1),
2 (A (a (-1 + a1 - a2) (1 + a1 - a2) +
b (2 a1 a2 + b1 - a1 b1 - a2 b1)) +
B (b (-2 + b1) b1 +
a (2 a1 a2 + b1 - a1 b1 - a2 b1))) , (A^2 (-1 + a1 -
a2) (1 + a1 - a2) + B^2 (-2 + b1) b1 +
2 A B (2 a1 a2 + b1 - a1 b1 - a2 b1))} == 4 {P0, P1, P2}, {a1,
a2, b1}]];
subst = Sort[{a1, a2, b1} /. subst, #1[[3]] < #2[[3]] &];
MatrixForm[subst]
aa = FullSimplify[(D[#, {x, 2}] - (
P0 + P1 x + P2 x^2)/((x + a)^2 (x + b)^2) #) & /@ {y1[x],
y2[x]}]
FullSimplify[aa /. Diagonal[Thread[{a1, a2, b1} -> #] & /@ subst[[1]]]]
Out[1483]= {0, 0}
In this particular example we had ${a,b}={9,7}$,${P_0,P_1,P_2}={ 0,4,9}$ and
begin{eqnarray}
left(begin{array}{r}a_1\a_2\b_1end{array}right)=left(
begin{array}{r}frac{1}{2} left(1+sqrt{37}+3 sqrt{46}-sqrt{694}right)\frac{1}{2} left(1-sqrt{1145+12 sqrt{7981}-4 sqrt{37 left(277+3 sqrt{7981}right)}}right)\1-sqrt{694}end{array}right)
end{eqnarray}
Update 1: Now let us go back to Update 0 and let us take some particular examples where we can indeed give closed form solutions .
(A)
If we set $P_2=P_1=0$ and $P_0 neq 0$ then we get the following:
begin{eqnarray}
a_1 &=& 1\
a_2 &=& 1+frac{sqrt{(a-b)^2+4 P_0}}{a-b}\
b_1 &=& a_2
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_0}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& {(a+x)^{frac{1}{2}+frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}} (b+x)^{frac{1}{2}-frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}}\
y_2(x) &=& {(a+x)^{frac{1}{2}-frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}
(b+x)^{frac{1}{2}+frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}}
end{eqnarray}
Note that :
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = (x+a) expleft( pm frac{sqrt{P_0}}{x+a}right)
end{eqnarray}
as it should be.
(B) Likewise let use take $P_2=P_0=0$ and $P_1 neq 0$. Then we are getting the following solution:
begin{eqnarray}
a_2 &=& 1-frac{sqrt{sqrt{16 a b P_1^2-4 P_1 (a+b) (a-b)^2+(a-b)^4}-2 P_1 (a+b)+(a-b)^2}}{sqrt{2} (a-b)}\
a_1 &=& 1-frac{P_1}{(1-a_2) (b-a)}\
b_1 &=& -1+a_1+a_2
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_1 x}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
Note that:
begin{eqnarray}
lim_{brightarrow a_+} a_2 &=& 1+ omega\
a_1 &=& 1-frac{4 a omega}{theta} \
b_1 &=& omega + 1 - frac{4 a omega}{theta}
end{eqnarray}
where $omega := frac{imath}{2} sqrt{frac{P_1}{a}}$ and $theta:=b-a$.
Therefore we have:
begin{eqnarray}
&&theta^{1+omega}cdot y_1(x) =\
&& (x+a)^{frac{omega+1}{2}-frac{2 a omega}{theta}} cdot (x+a +theta)^{frac{1}{2}(-1-omega+frac{4 a}{omega})} cdot theta^{1+omega} F_{2,1}left[
begin{array}{rr}
1+omega & 1- frac{4 a omega}{theta}\
& omega+1-frac{4 a omega}{theta}
end{array};
frac{x+a}{x+a+theta}
right]=\
&&left(1+frac{theta}{x+a}right)^{frac{2 a omega}{theta}} cdot theta^{1+omega} F_{2,1}left[
begin{array}{rr}
1+omega & 1- frac{4 a omega}{theta}\
& omega+1-frac{4 a omega}{theta}
end{array};
frac{x+a}{x+a+theta}
right] underbrace{=}_{theta rightarrow 0}\
&&e^{frac{2 a omega}{x+a}}cdot (x+a) (-4 a omega)^omega U(omega,0;-frac{4a omega}{x+a})
end{eqnarray}
See Compute a limit that involves a hypergeometric function. for explanations.
In case of the second function $(a_1,a_2,b_1) rightarrow (a_1-b_1+1,a_2-b_1+1,2-b_1)$ which is equivalent to $omega rightarrow -omega$
and therefore :
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = (x+a) cdot expleft(pm frac{2 a omega}{x+a}right) cdot U(pmomega,0;mpfrac{4 a omega}{x+a})
end{eqnarray}
where $U$ is the confluent hypergeometric function.
(C) Now let us assume that $P_0=P_1=0$ and $P_2neq 0$. Define $Q:=sqrt{1+4 P_2}$. Then we have:
begin{eqnarray}
&&a_2^4 (a-b)^2+\
&&-2 a_2^3 (Q+1) (a-b)^2+\
&&a_2^2 left(a^2 (4 P_2+3 Q+2)-2 a b (6 P_2+3 Q+2)+b^2 (4 P_2+3 Q+2)right)+\
&&-a_2 left(a^2 (4 P_2+Q+1)-2 a b (2 P_2 (Q+3)+Q+1)+b^2 (4 P_2+Q+1)right)+\
&&-2 a b P_2 (Q+1)=0\
&&hline\
a_1&=& frac{b (a_2 Q+a_2-4 P_2-Q-1)-a (a_2-1) (Q+1)}{(a-b) (-2 a_2+Q+1)}\
b_1&=&a_1+a_2-Q
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_2 x^2}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
Now the calculation of the limit of $b$ going to $a$ is very similar to the case before so we only present the result. We have:
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = left(x+a right)^{frac{1-Q}{2}}cdot expleft(mp frac{asqrt{Q^2-1}}{2(x+a)} right) cdot Uleft(frac{1}{2}(1+Qmpsqrt{Q^2-1}),1+Q;pm frac{asqrt{Q^2-1}}{x+a} right)
end{eqnarray}
where $Q:=sqrt{1+4 P_2}$.
(D) Now let us assume that $P_0$,$P_1$ and $P_2$ are arbitrary subject to $P_1 > 2 a P_2$. Then we have:
begin{eqnarray}
&&a_2^4 (a-b)^2+\
&&-2 a_2^3 (Q+1) (a-b)^2+\
&&a_2^2 left(a^2 (4 P_2+3 Q+2)+2 a (P_1-b (6 P_2+3 Q+2))+b^2 (4 P_2+3 Q+2)+2 b P_1-4 P_0right)+\
&&a_2 left(a^2 (-(4 P_2+Q+1))+2 a (b (2 P_2 (Q+3)+Q+1)-P_1
(Q+1))-b^2 (4 P_2+Q+1)-2 b P_1 (Q+1)+4 P_0 (Q+1)right)+\
&&a (Q+1) (P_1-2 b P_2)+P_1 (b Q+b+P_1)-2 P_0 (2 P_2+Q+1)=0\
&&hline\
&&a_1=frac{-a (a_2-1) (Q+1)+b (a_2 Q+a_2-4 P_2-Q-1)+2 P_1}{(a-b) (-2 a_2+Q+1)}\
&&b_1=a_1+a_2-Q
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_0+P_1 x+P_2 x^2}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
In the limit $b$ going to $a$ we have the following result:
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = left(x+aright)^{frac{1-Q}{2}}cdot expleft(pm frac{R}{x+a}right)cdot Uleft(frac{1}{2}(1+Qpmfrac{-P_1+2 a P_2}{R}),1+Q;mp frac{2 R}{x+a} right)
end{eqnarray}
where $Q:=sqrt{1+4 P_2}$ and $R:=sqrt{P_0-P_1 a+P_2 a^2}$.
In fact science.fire.ustc.edu.cn/download/download1/… already seckill most of your long text. Anyway, you still give an important special case that a normal form of Heun's Equation can reduce to the Gaussian hypergeometric equation.
– doraemonpaul
Oct 27 at 12:59
add a comment |
up vote
0
down vote
Again by applying the same algorithm to the Gaussian hypergeometric differential equation, i.e. by rescaling the ODE in question by $x rightarrow f(x)$,$d/dx rightarrow 1/f^{'}(x) d/dx$ with $f(x):=A x^n$ and then by eliminating the term proportional to the first derivative we found the following result.
Let $a$,$b$,$c$,$A$ and $n$ be real numbers. Then the following ODE:
begin{eqnarray}
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!y^{''}(x) + left(frac{-A^2 x^{2 n} left(a^2 n^2-2 a b n^2+b^2 n^2-1right)+2 A x^n left(n^2 (a (c-2 b)+(b-1) c+1)-1right)-(c-1)^2 n^2+1}{4 x^2 left(1-A x^nright)^2}right) y(x)=0
end{eqnarray}
is solved by $y(x) = C_1 y_1(x) + C_2 y_2(x)$ where :
begin{eqnarray}
y_1(x)&=&x^{frac{1}{2} ((c-1) n+1)} left(1-A x^nright)^{frac{1}{2} (a+b-c+1)} , _2F_1left(a,b;c;A x^nright)\
y_2(x)&=&x^{frac{1}{2} (1-(c-1) n)} left(1-A x^nright)^{frac{1}{2} (a+b-c+1)} , _2F_1left(a-c+1,b-c+1;2-c;A x^nright)
end{eqnarray}
The following Mathematica code neatly verifies the result:
In[759]:= Clear[y1]; Clear[y2]; A =.; n =.; a =.; b =.; c =.;
y1[x_] = x^(1/2 ((1 + (-1 + c) n) )) (1 - A x^n)^(
1/2 ((1 + a + b - c))) Hypergeometric2F1[a, b, c, A x^n];
y2[x_] = x^(1/2 ((1 - (-1 + c) n) )) (1 - A x^n)^(
1/2 ((1 + a + b - c)))
Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c, A x^n];
FullSimplify[((
1 - (-1 + c)^2 n^2 +
2 A (-1 + (1 + (-1 + b) c + a (-2 b + c)) n^2) x^n -
A^2 (-1 + a^2 n^2 - 2 a b n^2 + b^2 n^2) x^(2 n))/(
4 x^2 (1 - A x^n)^2)) # + D[#, {x, 2}]] & /@ {y1[x], y2[x]}
Out[762]= {0, 0}
add a comment |
up vote
0
down vote
Let $A$,$B$,$C$, $D$ and $n$ be integers. Let $P_0$,$P_1$ and $P_2$ be another integers. Now let $a$,$b$ and $c$ be complex numbers such that such that:
begin{eqnarray}
P_0&=&B^2 left(a^2-2 a b+b^2-1right)+2 B D (2 a b-a c-b c+c)+(c-2) c D^2\
P_1&=&2 left(A left(B left(a^2-2 a b+b^2-1right)+D (2 a b-a c-b c+c)right)+C (a B (2 b-c)+c (-b B+B+(c-2)
D))right)\
P_2&=&A^2 left(a^2-2 a b+b^2-1right)+2 A C (2 a b-a c-b c+c)+(c-2) c C^2
end{eqnarray}
Consider the following ODE:
begin{eqnarray}
y^{''}(x) + frac{n}{x} y^{'}(x) + left( frac{n(n-2)}{4 x^2} - (B C - A D)^2 frac{P_0 + P_1 x+P_2 x^2}{4(B+A x)^2(B-D+(A-C)x)^2(D+C x)^2}right)y(x)=0
end{eqnarray}
then
begin{eqnarray}
&&y(x)= x^{-n/2} (A x+B)^{c/2} (C x+D)^{frac{1}{2} (-a-b+1)} (A x+B-C x-D)^{frac{1}{2} (a+b-c+1)} cdot \
&&left( C_2 left(frac{A x+B}{C x+D}right)^{1-c} , _2F_1left(a-c+1,b-c+1;2-c;frac{B+A x}{D+C x}right)+C_1 , _2F_1left(a,b;c;frac{B+A x}{D+C x}right)right)
end{eqnarray}
In[13]:= A =.; B =.; CC =.; DD =.; a =.; b =.; c =.; Clear[m]; n =.;
x =.;
{A, B, CC, DD} = RandomSample[Range[1, 10], 4];
{P0, P1, P2} = RandomSample[Range[1, 10], 3];
subst = Solve[{(-1 + a^2 - 2 a b + b^2) B^2 +
2 B (2 a b + c - a c - b c) DD + (-2 + c) c DD^2,
2 (A ((-1 + a^2 - 2 a b + b^2) B + (2 a b + c - a c - b c) DD) +
CC (a B (2 b - c) + c (B - b B + (-2 + c) DD))),
A^2 (-1 + a^2 - 2 a b + b^2) +
2 A (2 a b + c - a c - b c) CC + (-2 + c) c CC^2} == {P0, P1,
P2}, {a, b, c}];
{a, b, c} = {a, b, c} /. subst[[1]];
m[x_] = x^(-n/2) (CC x + DD)^(1/2 (1 - a - b)) (B + A x)^(
c/2) (B - DD + A x - CC x)^(1/2 (1 + a + b - c));
eX = (D[#, {x, 2}] +
n/x D[#,
x] + (((-2 + n) n)/(
4 x^2) - ((B CC - A DD)^2 (P0 + P1 x + P2 x^2))/(
4 (B + A x)^2 (B - DD + A x - CC x)^2 (DD +
CC x)^2)) #) & /@ {m[
x] (C[1] Hypergeometric2F1[a, b, c, (A x + B)/(CC x + DD)] +
C[2] ((A x + B)/(CC x + DD))^(1 - c)
Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c, (A x + B)/(
CC x + DD)])};
{n, x} = RandomReal[{1, 10}, 2, WorkingPrecision -> 50];
Simplify[eX]
Out[21]= {(0.*10^-48 + 0.*10^-49 I) C[
1] + (0.*10^-48 + 0.*10^-48 I) C[2]}
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
By applying the same algorithm to the Bessel functions we get the following answer:
begin{equation}
frac{d^2 y(x)}{d x^2} -n^2(A b-a B)^2 frac{left(-B^{2 n}(A x+a)^{2n}+A^{2 n}(B x+b)^{2 n}right)}{B^{2 n}(A x+a)^2(B x+b)^{2n+2}}cdot y(x)=0
end{equation}
is solved by
begin{eqnarray}
&&y(x)=\
&&C_1cdot sqrt{(A x+a)(B x+b)} J_{frac{sqrt{1+(A/B)^{2 n}4 n^2}}{2 n}}left[(frac{A x+a}{B x+b})^nright]+\
&&
C_2cdot sqrt{(A x+a)(B x+b)} J_{-frac{sqrt{1+(A/B)^{2 n}4 n^2}}{2 n}}left[(frac{A x+a}{B x+b})^nright]
end{eqnarray}
The result is checked by the following piece of code:
In[115]:= Table[
FullSimplify[(D[#, {x, 2}] - (
n^2 (A b - a B)^2 (-B^(2 n) (A x + a)^(2 n) +
A^(2 n) (B x + b)^(2 n)))/(
B^(2 n) (a + A x)^2 (b + B x)^(2 n + 2)) #) & /@ {Sqrt[(a +
A x) (b + B x)]
BesselJ[Sqrt[1 + (A/B)^(2 n) 4 n^2]/(
2 n), ((A x + a)/(B x + b))^n],
Sqrt[(a + A x) (b + B x)]
BesselJ[-(Sqrt[1 + (A/B)^(2 n) 4 n^2]/(2 n)), ((A x + a)/(
B x + b))^n]}], {n, 1, 6}]
Out[115]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}
add a comment |
up vote
0
down vote
By applying the same algorithm to the Bessel functions we get the following answer:
begin{equation}
frac{d^2 y(x)}{d x^2} -n^2(A b-a B)^2 frac{left(-B^{2 n}(A x+a)^{2n}+A^{2 n}(B x+b)^{2 n}right)}{B^{2 n}(A x+a)^2(B x+b)^{2n+2}}cdot y(x)=0
end{equation}
is solved by
begin{eqnarray}
&&y(x)=\
&&C_1cdot sqrt{(A x+a)(B x+b)} J_{frac{sqrt{1+(A/B)^{2 n}4 n^2}}{2 n}}left[(frac{A x+a}{B x+b})^nright]+\
&&
C_2cdot sqrt{(A x+a)(B x+b)} J_{-frac{sqrt{1+(A/B)^{2 n}4 n^2}}{2 n}}left[(frac{A x+a}{B x+b})^nright]
end{eqnarray}
The result is checked by the following piece of code:
In[115]:= Table[
FullSimplify[(D[#, {x, 2}] - (
n^2 (A b - a B)^2 (-B^(2 n) (A x + a)^(2 n) +
A^(2 n) (B x + b)^(2 n)))/(
B^(2 n) (a + A x)^2 (b + B x)^(2 n + 2)) #) & /@ {Sqrt[(a +
A x) (b + B x)]
BesselJ[Sqrt[1 + (A/B)^(2 n) 4 n^2]/(
2 n), ((A x + a)/(B x + b))^n],
Sqrt[(a + A x) (b + B x)]
BesselJ[-(Sqrt[1 + (A/B)^(2 n) 4 n^2]/(2 n)), ((A x + a)/(
B x + b))^n]}], {n, 1, 6}]
Out[115]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}
add a comment |
up vote
0
down vote
up vote
0
down vote
By applying the same algorithm to the Bessel functions we get the following answer:
begin{equation}
frac{d^2 y(x)}{d x^2} -n^2(A b-a B)^2 frac{left(-B^{2 n}(A x+a)^{2n}+A^{2 n}(B x+b)^{2 n}right)}{B^{2 n}(A x+a)^2(B x+b)^{2n+2}}cdot y(x)=0
end{equation}
is solved by
begin{eqnarray}
&&y(x)=\
&&C_1cdot sqrt{(A x+a)(B x+b)} J_{frac{sqrt{1+(A/B)^{2 n}4 n^2}}{2 n}}left[(frac{A x+a}{B x+b})^nright]+\
&&
C_2cdot sqrt{(A x+a)(B x+b)} J_{-frac{sqrt{1+(A/B)^{2 n}4 n^2}}{2 n}}left[(frac{A x+a}{B x+b})^nright]
end{eqnarray}
The result is checked by the following piece of code:
In[115]:= Table[
FullSimplify[(D[#, {x, 2}] - (
n^2 (A b - a B)^2 (-B^(2 n) (A x + a)^(2 n) +
A^(2 n) (B x + b)^(2 n)))/(
B^(2 n) (a + A x)^2 (b + B x)^(2 n + 2)) #) & /@ {Sqrt[(a +
A x) (b + B x)]
BesselJ[Sqrt[1 + (A/B)^(2 n) 4 n^2]/(
2 n), ((A x + a)/(B x + b))^n],
Sqrt[(a + A x) (b + B x)]
BesselJ[-(Sqrt[1 + (A/B)^(2 n) 4 n^2]/(2 n)), ((A x + a)/(
B x + b))^n]}], {n, 1, 6}]
Out[115]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}
By applying the same algorithm to the Bessel functions we get the following answer:
begin{equation}
frac{d^2 y(x)}{d x^2} -n^2(A b-a B)^2 frac{left(-B^{2 n}(A x+a)^{2n}+A^{2 n}(B x+b)^{2 n}right)}{B^{2 n}(A x+a)^2(B x+b)^{2n+2}}cdot y(x)=0
end{equation}
is solved by
begin{eqnarray}
&&y(x)=\
&&C_1cdot sqrt{(A x+a)(B x+b)} J_{frac{sqrt{1+(A/B)^{2 n}4 n^2}}{2 n}}left[(frac{A x+a}{B x+b})^nright]+\
&&
C_2cdot sqrt{(A x+a)(B x+b)} J_{-frac{sqrt{1+(A/B)^{2 n}4 n^2}}{2 n}}left[(frac{A x+a}{B x+b})^nright]
end{eqnarray}
The result is checked by the following piece of code:
In[115]:= Table[
FullSimplify[(D[#, {x, 2}] - (
n^2 (A b - a B)^2 (-B^(2 n) (A x + a)^(2 n) +
A^(2 n) (B x + b)^(2 n)))/(
B^(2 n) (a + A x)^2 (b + B x)^(2 n + 2)) #) & /@ {Sqrt[(a +
A x) (b + B x)]
BesselJ[Sqrt[1 + (A/B)^(2 n) 4 n^2]/(
2 n), ((A x + a)/(B x + b))^n],
Sqrt[(a + A x) (b + B x)]
BesselJ[-(Sqrt[1 + (A/B)^(2 n) 4 n^2]/(2 n)), ((A x + a)/(
B x + b))^n]}], {n, 1, 6}]
Out[115]= {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}
edited Aug 31 at 14:37
answered Aug 31 at 12:18
Przemo
4,1271928
4,1271928
add a comment |
add a comment |
up vote
0
down vote
Let $a,b,A,B in {mathbb N}$ subject to $(a-b)^2 + (A-B)^2 > 0$.
Now let $a_1,a_2,b_1 in {mathbb R}$ and define:
begin{eqnarray}
P_0 &:=& a^2 (a_1-a_2-1) (a_1-a_2+1)+2 a b (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+b^2 (b_1-2) b_1 \
P_1 &:=& 2 (A (a (a_1-a_2-1) (a_1-a_2+1)+b (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1))+B (a (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+b
(b_1-2) b_1)) \
P_2 &:=& A^2 (a_1-a_2-1) (a_1-a_2+1)+2 A B (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+B^2 (b_1-2) b_1
end{eqnarray}
Then the fundamental solutions to the following ODE:
begin{eqnarray}
frac{d^2 y(x)}{d x^2} - (a B-A b)^2frac{left(P_0 + P_1 x + P_2 x^2right)}{4 (a+A x)^2 (b+B x)^2 (a-b+ (A-B)x)^2} cdot y(x) = 0
end{eqnarray}
have the following form:
begin{eqnarray}
&&y_1(x) := (a+A x)^{b_1/2} (b+B x)^{frac{1}{2} (-a_1-a_2+1)} (a+x (A-B)-b)^{frac{1}{2} (a_1+a_2-b_1+1)} , _2F_1left(a_1,a_2;b_1;frac{a+A x}{b+B x}right)\
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!y_2(x) := (a+A x)^{1-frac{b_1}{2}} (b+B x)^{frac{1}{2} (-a_1-a_2-1)+b_1} (a+x (A-B)-b)^{frac{1}{2} (a_1+a_2-b_1+1)} ,
_2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+A x}{b+B x}right)
end{eqnarray}
The following Mathematica code verifies the result:
In[1109]:= A =.; B =.; a =.; b =.; Clear[y1]; Clear[y2]; Clear[v]; x =.;
{A, B, a, b} = RandomInteger[{0, 20}, 4];
v[x_] := (-A b + a B)^2/(
4 (a + A x)^2 (a - b + A x - B x)^2 (b +
B x)^2) (a^2 (-1 + a1 - a2) (1 + a1 - a2) + b^2 (-2 + b1) b1 +
2 a b (2 a1 a2 + b1 - a1 b1 - a2 b1) +
2 (A (a (-1 + a1 - a2) (1 + a1 - a2) +
b (2 a1 a2 + b1 - a1 b1 - a2 b1)) +
B (b (-2 + b1) b1 +
a (2 a1 a2 + b1 - a1 b1 - a2 b1))) x + (A^2 (-1 + a1 -
a2) (1 + a1 - a2) + B^2 (-2 + b1) b1 +
2 A B (2 a1 a2 + b1 - a1 b1 - a2 b1)) x^2);
y1[x_] := (a + A x)^(b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (1 - a1 - a2))
Hypergeometric2F1[a1, a2, b1, (A x + a)^1/(B x + b)^1];
y2[x_] := (a + A x)^(1 - b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (-1 - a1 - a2) + b1)
Hypergeometric2F1[1 + a1 - b1, 1 + a2 - b1,
2 - b1, (A x + a)^1/(B x + b)^1];
FullSimplify[(D[#, {x, 2}] - v[x] #) & /@ {y1[x], y2[x]}]
Out[1114]= {0, 0}
Update 0: The result above can be used to solve the following inverse problem.
Let $A=B=1$. Now let $a,b in {mathbb N}$ and let $P_0,P_1,P_2 in {mathbb N}$ subject to $P_0^2 + P_1^2 + P_2^2 > 0$. Then there always exist certain $a_1,a_2,b_1 in {mathbb R}$ such that the functions $y_{1,2}(x)$ above are fundamental solutions to the following ODE:
begin{eqnarray}
frac{d^2 y(x)}{d x^2} - frac{(P_0+P_1 x+P_2 x^2)}{(x+a)^2(x+b)^2} cdot y(x)=0
end{eqnarray}
Indeed if we set $A=B=1$ and then if we set $a,b in {mathbb N}$ in the top three equations defining $P_0,P_1,P_2$ above we can always solve those equations for $a_1,a_2,b_1$. Here is the Mathematica code that accomplishes that:
In[1473]:= {A, B} = {1, 1}; Clear[y1]; Clear[y2];
y1[x_] := (a + A x)^(b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (1 - a1 - a2))
Hypergeometric2F1[a1, a2, b1, (A x + a)^1/(B x + b)^1];
y2[x_] := (a + A x)^(1 - b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (-1 - a1 - a2) + b1)
Hypergeometric2F1[1 + a1 - b1, 1 + a2 - b1,
2 - b1, (A x + a)^1/(B x + b)^1];
{a, b} = RandomInteger[{0, 10}, 2];
{P0, P1, P2} = RandomInteger[{0, 10}, 3];
a1 =.; a2 =.; b1 =.;
subst = FullSimplify[
Solve[{a^2 (-1 + a1 - a2) (1 + a1 - a2) + b^2 (-2 + b1) b1 +
2 a b (2 a1 a2 + b1 - a1 b1 - a2 b1),
2 (A (a (-1 + a1 - a2) (1 + a1 - a2) +
b (2 a1 a2 + b1 - a1 b1 - a2 b1)) +
B (b (-2 + b1) b1 +
a (2 a1 a2 + b1 - a1 b1 - a2 b1))) , (A^2 (-1 + a1 -
a2) (1 + a1 - a2) + B^2 (-2 + b1) b1 +
2 A B (2 a1 a2 + b1 - a1 b1 - a2 b1))} == 4 {P0, P1, P2}, {a1,
a2, b1}]];
subst = Sort[{a1, a2, b1} /. subst, #1[[3]] < #2[[3]] &];
MatrixForm[subst]
aa = FullSimplify[(D[#, {x, 2}] - (
P0 + P1 x + P2 x^2)/((x + a)^2 (x + b)^2) #) & /@ {y1[x],
y2[x]}]
FullSimplify[aa /. Diagonal[Thread[{a1, a2, b1} -> #] & /@ subst[[1]]]]
Out[1483]= {0, 0}
In this particular example we had ${a,b}={9,7}$,${P_0,P_1,P_2}={ 0,4,9}$ and
begin{eqnarray}
left(begin{array}{r}a_1\a_2\b_1end{array}right)=left(
begin{array}{r}frac{1}{2} left(1+sqrt{37}+3 sqrt{46}-sqrt{694}right)\frac{1}{2} left(1-sqrt{1145+12 sqrt{7981}-4 sqrt{37 left(277+3 sqrt{7981}right)}}right)\1-sqrt{694}end{array}right)
end{eqnarray}
Update 1: Now let us go back to Update 0 and let us take some particular examples where we can indeed give closed form solutions .
(A)
If we set $P_2=P_1=0$ and $P_0 neq 0$ then we get the following:
begin{eqnarray}
a_1 &=& 1\
a_2 &=& 1+frac{sqrt{(a-b)^2+4 P_0}}{a-b}\
b_1 &=& a_2
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_0}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& {(a+x)^{frac{1}{2}+frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}} (b+x)^{frac{1}{2}-frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}}\
y_2(x) &=& {(a+x)^{frac{1}{2}-frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}
(b+x)^{frac{1}{2}+frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}}
end{eqnarray}
Note that :
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = (x+a) expleft( pm frac{sqrt{P_0}}{x+a}right)
end{eqnarray}
as it should be.
(B) Likewise let use take $P_2=P_0=0$ and $P_1 neq 0$. Then we are getting the following solution:
begin{eqnarray}
a_2 &=& 1-frac{sqrt{sqrt{16 a b P_1^2-4 P_1 (a+b) (a-b)^2+(a-b)^4}-2 P_1 (a+b)+(a-b)^2}}{sqrt{2} (a-b)}\
a_1 &=& 1-frac{P_1}{(1-a_2) (b-a)}\
b_1 &=& -1+a_1+a_2
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_1 x}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
Note that:
begin{eqnarray}
lim_{brightarrow a_+} a_2 &=& 1+ omega\
a_1 &=& 1-frac{4 a omega}{theta} \
b_1 &=& omega + 1 - frac{4 a omega}{theta}
end{eqnarray}
where $omega := frac{imath}{2} sqrt{frac{P_1}{a}}$ and $theta:=b-a$.
Therefore we have:
begin{eqnarray}
&&theta^{1+omega}cdot y_1(x) =\
&& (x+a)^{frac{omega+1}{2}-frac{2 a omega}{theta}} cdot (x+a +theta)^{frac{1}{2}(-1-omega+frac{4 a}{omega})} cdot theta^{1+omega} F_{2,1}left[
begin{array}{rr}
1+omega & 1- frac{4 a omega}{theta}\
& omega+1-frac{4 a omega}{theta}
end{array};
frac{x+a}{x+a+theta}
right]=\
&&left(1+frac{theta}{x+a}right)^{frac{2 a omega}{theta}} cdot theta^{1+omega} F_{2,1}left[
begin{array}{rr}
1+omega & 1- frac{4 a omega}{theta}\
& omega+1-frac{4 a omega}{theta}
end{array};
frac{x+a}{x+a+theta}
right] underbrace{=}_{theta rightarrow 0}\
&&e^{frac{2 a omega}{x+a}}cdot (x+a) (-4 a omega)^omega U(omega,0;-frac{4a omega}{x+a})
end{eqnarray}
See Compute a limit that involves a hypergeometric function. for explanations.
In case of the second function $(a_1,a_2,b_1) rightarrow (a_1-b_1+1,a_2-b_1+1,2-b_1)$ which is equivalent to $omega rightarrow -omega$
and therefore :
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = (x+a) cdot expleft(pm frac{2 a omega}{x+a}right) cdot U(pmomega,0;mpfrac{4 a omega}{x+a})
end{eqnarray}
where $U$ is the confluent hypergeometric function.
(C) Now let us assume that $P_0=P_1=0$ and $P_2neq 0$. Define $Q:=sqrt{1+4 P_2}$. Then we have:
begin{eqnarray}
&&a_2^4 (a-b)^2+\
&&-2 a_2^3 (Q+1) (a-b)^2+\
&&a_2^2 left(a^2 (4 P_2+3 Q+2)-2 a b (6 P_2+3 Q+2)+b^2 (4 P_2+3 Q+2)right)+\
&&-a_2 left(a^2 (4 P_2+Q+1)-2 a b (2 P_2 (Q+3)+Q+1)+b^2 (4 P_2+Q+1)right)+\
&&-2 a b P_2 (Q+1)=0\
&&hline\
a_1&=& frac{b (a_2 Q+a_2-4 P_2-Q-1)-a (a_2-1) (Q+1)}{(a-b) (-2 a_2+Q+1)}\
b_1&=&a_1+a_2-Q
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_2 x^2}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
Now the calculation of the limit of $b$ going to $a$ is very similar to the case before so we only present the result. We have:
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = left(x+a right)^{frac{1-Q}{2}}cdot expleft(mp frac{asqrt{Q^2-1}}{2(x+a)} right) cdot Uleft(frac{1}{2}(1+Qmpsqrt{Q^2-1}),1+Q;pm frac{asqrt{Q^2-1}}{x+a} right)
end{eqnarray}
where $Q:=sqrt{1+4 P_2}$.
(D) Now let us assume that $P_0$,$P_1$ and $P_2$ are arbitrary subject to $P_1 > 2 a P_2$. Then we have:
begin{eqnarray}
&&a_2^4 (a-b)^2+\
&&-2 a_2^3 (Q+1) (a-b)^2+\
&&a_2^2 left(a^2 (4 P_2+3 Q+2)+2 a (P_1-b (6 P_2+3 Q+2))+b^2 (4 P_2+3 Q+2)+2 b P_1-4 P_0right)+\
&&a_2 left(a^2 (-(4 P_2+Q+1))+2 a (b (2 P_2 (Q+3)+Q+1)-P_1
(Q+1))-b^2 (4 P_2+Q+1)-2 b P_1 (Q+1)+4 P_0 (Q+1)right)+\
&&a (Q+1) (P_1-2 b P_2)+P_1 (b Q+b+P_1)-2 P_0 (2 P_2+Q+1)=0\
&&hline\
&&a_1=frac{-a (a_2-1) (Q+1)+b (a_2 Q+a_2-4 P_2-Q-1)+2 P_1}{(a-b) (-2 a_2+Q+1)}\
&&b_1=a_1+a_2-Q
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_0+P_1 x+P_2 x^2}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
In the limit $b$ going to $a$ we have the following result:
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = left(x+aright)^{frac{1-Q}{2}}cdot expleft(pm frac{R}{x+a}right)cdot Uleft(frac{1}{2}(1+Qpmfrac{-P_1+2 a P_2}{R}),1+Q;mp frac{2 R}{x+a} right)
end{eqnarray}
where $Q:=sqrt{1+4 P_2}$ and $R:=sqrt{P_0-P_1 a+P_2 a^2}$.
In fact science.fire.ustc.edu.cn/download/download1/… already seckill most of your long text. Anyway, you still give an important special case that a normal form of Heun's Equation can reduce to the Gaussian hypergeometric equation.
– doraemonpaul
Oct 27 at 12:59
add a comment |
up vote
0
down vote
Let $a,b,A,B in {mathbb N}$ subject to $(a-b)^2 + (A-B)^2 > 0$.
Now let $a_1,a_2,b_1 in {mathbb R}$ and define:
begin{eqnarray}
P_0 &:=& a^2 (a_1-a_2-1) (a_1-a_2+1)+2 a b (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+b^2 (b_1-2) b_1 \
P_1 &:=& 2 (A (a (a_1-a_2-1) (a_1-a_2+1)+b (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1))+B (a (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+b
(b_1-2) b_1)) \
P_2 &:=& A^2 (a_1-a_2-1) (a_1-a_2+1)+2 A B (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+B^2 (b_1-2) b_1
end{eqnarray}
Then the fundamental solutions to the following ODE:
begin{eqnarray}
frac{d^2 y(x)}{d x^2} - (a B-A b)^2frac{left(P_0 + P_1 x + P_2 x^2right)}{4 (a+A x)^2 (b+B x)^2 (a-b+ (A-B)x)^2} cdot y(x) = 0
end{eqnarray}
have the following form:
begin{eqnarray}
&&y_1(x) := (a+A x)^{b_1/2} (b+B x)^{frac{1}{2} (-a_1-a_2+1)} (a+x (A-B)-b)^{frac{1}{2} (a_1+a_2-b_1+1)} , _2F_1left(a_1,a_2;b_1;frac{a+A x}{b+B x}right)\
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!y_2(x) := (a+A x)^{1-frac{b_1}{2}} (b+B x)^{frac{1}{2} (-a_1-a_2-1)+b_1} (a+x (A-B)-b)^{frac{1}{2} (a_1+a_2-b_1+1)} ,
_2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+A x}{b+B x}right)
end{eqnarray}
The following Mathematica code verifies the result:
In[1109]:= A =.; B =.; a =.; b =.; Clear[y1]; Clear[y2]; Clear[v]; x =.;
{A, B, a, b} = RandomInteger[{0, 20}, 4];
v[x_] := (-A b + a B)^2/(
4 (a + A x)^2 (a - b + A x - B x)^2 (b +
B x)^2) (a^2 (-1 + a1 - a2) (1 + a1 - a2) + b^2 (-2 + b1) b1 +
2 a b (2 a1 a2 + b1 - a1 b1 - a2 b1) +
2 (A (a (-1 + a1 - a2) (1 + a1 - a2) +
b (2 a1 a2 + b1 - a1 b1 - a2 b1)) +
B (b (-2 + b1) b1 +
a (2 a1 a2 + b1 - a1 b1 - a2 b1))) x + (A^2 (-1 + a1 -
a2) (1 + a1 - a2) + B^2 (-2 + b1) b1 +
2 A B (2 a1 a2 + b1 - a1 b1 - a2 b1)) x^2);
y1[x_] := (a + A x)^(b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (1 - a1 - a2))
Hypergeometric2F1[a1, a2, b1, (A x + a)^1/(B x + b)^1];
y2[x_] := (a + A x)^(1 - b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (-1 - a1 - a2) + b1)
Hypergeometric2F1[1 + a1 - b1, 1 + a2 - b1,
2 - b1, (A x + a)^1/(B x + b)^1];
FullSimplify[(D[#, {x, 2}] - v[x] #) & /@ {y1[x], y2[x]}]
Out[1114]= {0, 0}
Update 0: The result above can be used to solve the following inverse problem.
Let $A=B=1$. Now let $a,b in {mathbb N}$ and let $P_0,P_1,P_2 in {mathbb N}$ subject to $P_0^2 + P_1^2 + P_2^2 > 0$. Then there always exist certain $a_1,a_2,b_1 in {mathbb R}$ such that the functions $y_{1,2}(x)$ above are fundamental solutions to the following ODE:
begin{eqnarray}
frac{d^2 y(x)}{d x^2} - frac{(P_0+P_1 x+P_2 x^2)}{(x+a)^2(x+b)^2} cdot y(x)=0
end{eqnarray}
Indeed if we set $A=B=1$ and then if we set $a,b in {mathbb N}$ in the top three equations defining $P_0,P_1,P_2$ above we can always solve those equations for $a_1,a_2,b_1$. Here is the Mathematica code that accomplishes that:
In[1473]:= {A, B} = {1, 1}; Clear[y1]; Clear[y2];
y1[x_] := (a + A x)^(b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (1 - a1 - a2))
Hypergeometric2F1[a1, a2, b1, (A x + a)^1/(B x + b)^1];
y2[x_] := (a + A x)^(1 - b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (-1 - a1 - a2) + b1)
Hypergeometric2F1[1 + a1 - b1, 1 + a2 - b1,
2 - b1, (A x + a)^1/(B x + b)^1];
{a, b} = RandomInteger[{0, 10}, 2];
{P0, P1, P2} = RandomInteger[{0, 10}, 3];
a1 =.; a2 =.; b1 =.;
subst = FullSimplify[
Solve[{a^2 (-1 + a1 - a2) (1 + a1 - a2) + b^2 (-2 + b1) b1 +
2 a b (2 a1 a2 + b1 - a1 b1 - a2 b1),
2 (A (a (-1 + a1 - a2) (1 + a1 - a2) +
b (2 a1 a2 + b1 - a1 b1 - a2 b1)) +
B (b (-2 + b1) b1 +
a (2 a1 a2 + b1 - a1 b1 - a2 b1))) , (A^2 (-1 + a1 -
a2) (1 + a1 - a2) + B^2 (-2 + b1) b1 +
2 A B (2 a1 a2 + b1 - a1 b1 - a2 b1))} == 4 {P0, P1, P2}, {a1,
a2, b1}]];
subst = Sort[{a1, a2, b1} /. subst, #1[[3]] < #2[[3]] &];
MatrixForm[subst]
aa = FullSimplify[(D[#, {x, 2}] - (
P0 + P1 x + P2 x^2)/((x + a)^2 (x + b)^2) #) & /@ {y1[x],
y2[x]}]
FullSimplify[aa /. Diagonal[Thread[{a1, a2, b1} -> #] & /@ subst[[1]]]]
Out[1483]= {0, 0}
In this particular example we had ${a,b}={9,7}$,${P_0,P_1,P_2}={ 0,4,9}$ and
begin{eqnarray}
left(begin{array}{r}a_1\a_2\b_1end{array}right)=left(
begin{array}{r}frac{1}{2} left(1+sqrt{37}+3 sqrt{46}-sqrt{694}right)\frac{1}{2} left(1-sqrt{1145+12 sqrt{7981}-4 sqrt{37 left(277+3 sqrt{7981}right)}}right)\1-sqrt{694}end{array}right)
end{eqnarray}
Update 1: Now let us go back to Update 0 and let us take some particular examples where we can indeed give closed form solutions .
(A)
If we set $P_2=P_1=0$ and $P_0 neq 0$ then we get the following:
begin{eqnarray}
a_1 &=& 1\
a_2 &=& 1+frac{sqrt{(a-b)^2+4 P_0}}{a-b}\
b_1 &=& a_2
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_0}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& {(a+x)^{frac{1}{2}+frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}} (b+x)^{frac{1}{2}-frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}}\
y_2(x) &=& {(a+x)^{frac{1}{2}-frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}
(b+x)^{frac{1}{2}+frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}}
end{eqnarray}
Note that :
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = (x+a) expleft( pm frac{sqrt{P_0}}{x+a}right)
end{eqnarray}
as it should be.
(B) Likewise let use take $P_2=P_0=0$ and $P_1 neq 0$. Then we are getting the following solution:
begin{eqnarray}
a_2 &=& 1-frac{sqrt{sqrt{16 a b P_1^2-4 P_1 (a+b) (a-b)^2+(a-b)^4}-2 P_1 (a+b)+(a-b)^2}}{sqrt{2} (a-b)}\
a_1 &=& 1-frac{P_1}{(1-a_2) (b-a)}\
b_1 &=& -1+a_1+a_2
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_1 x}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
Note that:
begin{eqnarray}
lim_{brightarrow a_+} a_2 &=& 1+ omega\
a_1 &=& 1-frac{4 a omega}{theta} \
b_1 &=& omega + 1 - frac{4 a omega}{theta}
end{eqnarray}
where $omega := frac{imath}{2} sqrt{frac{P_1}{a}}$ and $theta:=b-a$.
Therefore we have:
begin{eqnarray}
&&theta^{1+omega}cdot y_1(x) =\
&& (x+a)^{frac{omega+1}{2}-frac{2 a omega}{theta}} cdot (x+a +theta)^{frac{1}{2}(-1-omega+frac{4 a}{omega})} cdot theta^{1+omega} F_{2,1}left[
begin{array}{rr}
1+omega & 1- frac{4 a omega}{theta}\
& omega+1-frac{4 a omega}{theta}
end{array};
frac{x+a}{x+a+theta}
right]=\
&&left(1+frac{theta}{x+a}right)^{frac{2 a omega}{theta}} cdot theta^{1+omega} F_{2,1}left[
begin{array}{rr}
1+omega & 1- frac{4 a omega}{theta}\
& omega+1-frac{4 a omega}{theta}
end{array};
frac{x+a}{x+a+theta}
right] underbrace{=}_{theta rightarrow 0}\
&&e^{frac{2 a omega}{x+a}}cdot (x+a) (-4 a omega)^omega U(omega,0;-frac{4a omega}{x+a})
end{eqnarray}
See Compute a limit that involves a hypergeometric function. for explanations.
In case of the second function $(a_1,a_2,b_1) rightarrow (a_1-b_1+1,a_2-b_1+1,2-b_1)$ which is equivalent to $omega rightarrow -omega$
and therefore :
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = (x+a) cdot expleft(pm frac{2 a omega}{x+a}right) cdot U(pmomega,0;mpfrac{4 a omega}{x+a})
end{eqnarray}
where $U$ is the confluent hypergeometric function.
(C) Now let us assume that $P_0=P_1=0$ and $P_2neq 0$. Define $Q:=sqrt{1+4 P_2}$. Then we have:
begin{eqnarray}
&&a_2^4 (a-b)^2+\
&&-2 a_2^3 (Q+1) (a-b)^2+\
&&a_2^2 left(a^2 (4 P_2+3 Q+2)-2 a b (6 P_2+3 Q+2)+b^2 (4 P_2+3 Q+2)right)+\
&&-a_2 left(a^2 (4 P_2+Q+1)-2 a b (2 P_2 (Q+3)+Q+1)+b^2 (4 P_2+Q+1)right)+\
&&-2 a b P_2 (Q+1)=0\
&&hline\
a_1&=& frac{b (a_2 Q+a_2-4 P_2-Q-1)-a (a_2-1) (Q+1)}{(a-b) (-2 a_2+Q+1)}\
b_1&=&a_1+a_2-Q
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_2 x^2}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
Now the calculation of the limit of $b$ going to $a$ is very similar to the case before so we only present the result. We have:
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = left(x+a right)^{frac{1-Q}{2}}cdot expleft(mp frac{asqrt{Q^2-1}}{2(x+a)} right) cdot Uleft(frac{1}{2}(1+Qmpsqrt{Q^2-1}),1+Q;pm frac{asqrt{Q^2-1}}{x+a} right)
end{eqnarray}
where $Q:=sqrt{1+4 P_2}$.
(D) Now let us assume that $P_0$,$P_1$ and $P_2$ are arbitrary subject to $P_1 > 2 a P_2$. Then we have:
begin{eqnarray}
&&a_2^4 (a-b)^2+\
&&-2 a_2^3 (Q+1) (a-b)^2+\
&&a_2^2 left(a^2 (4 P_2+3 Q+2)+2 a (P_1-b (6 P_2+3 Q+2))+b^2 (4 P_2+3 Q+2)+2 b P_1-4 P_0right)+\
&&a_2 left(a^2 (-(4 P_2+Q+1))+2 a (b (2 P_2 (Q+3)+Q+1)-P_1
(Q+1))-b^2 (4 P_2+Q+1)-2 b P_1 (Q+1)+4 P_0 (Q+1)right)+\
&&a (Q+1) (P_1-2 b P_2)+P_1 (b Q+b+P_1)-2 P_0 (2 P_2+Q+1)=0\
&&hline\
&&a_1=frac{-a (a_2-1) (Q+1)+b (a_2 Q+a_2-4 P_2-Q-1)+2 P_1}{(a-b) (-2 a_2+Q+1)}\
&&b_1=a_1+a_2-Q
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_0+P_1 x+P_2 x^2}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
In the limit $b$ going to $a$ we have the following result:
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = left(x+aright)^{frac{1-Q}{2}}cdot expleft(pm frac{R}{x+a}right)cdot Uleft(frac{1}{2}(1+Qpmfrac{-P_1+2 a P_2}{R}),1+Q;mp frac{2 R}{x+a} right)
end{eqnarray}
where $Q:=sqrt{1+4 P_2}$ and $R:=sqrt{P_0-P_1 a+P_2 a^2}$.
In fact science.fire.ustc.edu.cn/download/download1/… already seckill most of your long text. Anyway, you still give an important special case that a normal form of Heun's Equation can reduce to the Gaussian hypergeometric equation.
– doraemonpaul
Oct 27 at 12:59
add a comment |
up vote
0
down vote
up vote
0
down vote
Let $a,b,A,B in {mathbb N}$ subject to $(a-b)^2 + (A-B)^2 > 0$.
Now let $a_1,a_2,b_1 in {mathbb R}$ and define:
begin{eqnarray}
P_0 &:=& a^2 (a_1-a_2-1) (a_1-a_2+1)+2 a b (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+b^2 (b_1-2) b_1 \
P_1 &:=& 2 (A (a (a_1-a_2-1) (a_1-a_2+1)+b (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1))+B (a (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+b
(b_1-2) b_1)) \
P_2 &:=& A^2 (a_1-a_2-1) (a_1-a_2+1)+2 A B (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+B^2 (b_1-2) b_1
end{eqnarray}
Then the fundamental solutions to the following ODE:
begin{eqnarray}
frac{d^2 y(x)}{d x^2} - (a B-A b)^2frac{left(P_0 + P_1 x + P_2 x^2right)}{4 (a+A x)^2 (b+B x)^2 (a-b+ (A-B)x)^2} cdot y(x) = 0
end{eqnarray}
have the following form:
begin{eqnarray}
&&y_1(x) := (a+A x)^{b_1/2} (b+B x)^{frac{1}{2} (-a_1-a_2+1)} (a+x (A-B)-b)^{frac{1}{2} (a_1+a_2-b_1+1)} , _2F_1left(a_1,a_2;b_1;frac{a+A x}{b+B x}right)\
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!y_2(x) := (a+A x)^{1-frac{b_1}{2}} (b+B x)^{frac{1}{2} (-a_1-a_2-1)+b_1} (a+x (A-B)-b)^{frac{1}{2} (a_1+a_2-b_1+1)} ,
_2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+A x}{b+B x}right)
end{eqnarray}
The following Mathematica code verifies the result:
In[1109]:= A =.; B =.; a =.; b =.; Clear[y1]; Clear[y2]; Clear[v]; x =.;
{A, B, a, b} = RandomInteger[{0, 20}, 4];
v[x_] := (-A b + a B)^2/(
4 (a + A x)^2 (a - b + A x - B x)^2 (b +
B x)^2) (a^2 (-1 + a1 - a2) (1 + a1 - a2) + b^2 (-2 + b1) b1 +
2 a b (2 a1 a2 + b1 - a1 b1 - a2 b1) +
2 (A (a (-1 + a1 - a2) (1 + a1 - a2) +
b (2 a1 a2 + b1 - a1 b1 - a2 b1)) +
B (b (-2 + b1) b1 +
a (2 a1 a2 + b1 - a1 b1 - a2 b1))) x + (A^2 (-1 + a1 -
a2) (1 + a1 - a2) + B^2 (-2 + b1) b1 +
2 A B (2 a1 a2 + b1 - a1 b1 - a2 b1)) x^2);
y1[x_] := (a + A x)^(b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (1 - a1 - a2))
Hypergeometric2F1[a1, a2, b1, (A x + a)^1/(B x + b)^1];
y2[x_] := (a + A x)^(1 - b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (-1 - a1 - a2) + b1)
Hypergeometric2F1[1 + a1 - b1, 1 + a2 - b1,
2 - b1, (A x + a)^1/(B x + b)^1];
FullSimplify[(D[#, {x, 2}] - v[x] #) & /@ {y1[x], y2[x]}]
Out[1114]= {0, 0}
Update 0: The result above can be used to solve the following inverse problem.
Let $A=B=1$. Now let $a,b in {mathbb N}$ and let $P_0,P_1,P_2 in {mathbb N}$ subject to $P_0^2 + P_1^2 + P_2^2 > 0$. Then there always exist certain $a_1,a_2,b_1 in {mathbb R}$ such that the functions $y_{1,2}(x)$ above are fundamental solutions to the following ODE:
begin{eqnarray}
frac{d^2 y(x)}{d x^2} - frac{(P_0+P_1 x+P_2 x^2)}{(x+a)^2(x+b)^2} cdot y(x)=0
end{eqnarray}
Indeed if we set $A=B=1$ and then if we set $a,b in {mathbb N}$ in the top three equations defining $P_0,P_1,P_2$ above we can always solve those equations for $a_1,a_2,b_1$. Here is the Mathematica code that accomplishes that:
In[1473]:= {A, B} = {1, 1}; Clear[y1]; Clear[y2];
y1[x_] := (a + A x)^(b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (1 - a1 - a2))
Hypergeometric2F1[a1, a2, b1, (A x + a)^1/(B x + b)^1];
y2[x_] := (a + A x)^(1 - b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (-1 - a1 - a2) + b1)
Hypergeometric2F1[1 + a1 - b1, 1 + a2 - b1,
2 - b1, (A x + a)^1/(B x + b)^1];
{a, b} = RandomInteger[{0, 10}, 2];
{P0, P1, P2} = RandomInteger[{0, 10}, 3];
a1 =.; a2 =.; b1 =.;
subst = FullSimplify[
Solve[{a^2 (-1 + a1 - a2) (1 + a1 - a2) + b^2 (-2 + b1) b1 +
2 a b (2 a1 a2 + b1 - a1 b1 - a2 b1),
2 (A (a (-1 + a1 - a2) (1 + a1 - a2) +
b (2 a1 a2 + b1 - a1 b1 - a2 b1)) +
B (b (-2 + b1) b1 +
a (2 a1 a2 + b1 - a1 b1 - a2 b1))) , (A^2 (-1 + a1 -
a2) (1 + a1 - a2) + B^2 (-2 + b1) b1 +
2 A B (2 a1 a2 + b1 - a1 b1 - a2 b1))} == 4 {P0, P1, P2}, {a1,
a2, b1}]];
subst = Sort[{a1, a2, b1} /. subst, #1[[3]] < #2[[3]] &];
MatrixForm[subst]
aa = FullSimplify[(D[#, {x, 2}] - (
P0 + P1 x + P2 x^2)/((x + a)^2 (x + b)^2) #) & /@ {y1[x],
y2[x]}]
FullSimplify[aa /. Diagonal[Thread[{a1, a2, b1} -> #] & /@ subst[[1]]]]
Out[1483]= {0, 0}
In this particular example we had ${a,b}={9,7}$,${P_0,P_1,P_2}={ 0,4,9}$ and
begin{eqnarray}
left(begin{array}{r}a_1\a_2\b_1end{array}right)=left(
begin{array}{r}frac{1}{2} left(1+sqrt{37}+3 sqrt{46}-sqrt{694}right)\frac{1}{2} left(1-sqrt{1145+12 sqrt{7981}-4 sqrt{37 left(277+3 sqrt{7981}right)}}right)\1-sqrt{694}end{array}right)
end{eqnarray}
Update 1: Now let us go back to Update 0 and let us take some particular examples where we can indeed give closed form solutions .
(A)
If we set $P_2=P_1=0$ and $P_0 neq 0$ then we get the following:
begin{eqnarray}
a_1 &=& 1\
a_2 &=& 1+frac{sqrt{(a-b)^2+4 P_0}}{a-b}\
b_1 &=& a_2
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_0}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& {(a+x)^{frac{1}{2}+frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}} (b+x)^{frac{1}{2}-frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}}\
y_2(x) &=& {(a+x)^{frac{1}{2}-frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}
(b+x)^{frac{1}{2}+frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}}
end{eqnarray}
Note that :
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = (x+a) expleft( pm frac{sqrt{P_0}}{x+a}right)
end{eqnarray}
as it should be.
(B) Likewise let use take $P_2=P_0=0$ and $P_1 neq 0$. Then we are getting the following solution:
begin{eqnarray}
a_2 &=& 1-frac{sqrt{sqrt{16 a b P_1^2-4 P_1 (a+b) (a-b)^2+(a-b)^4}-2 P_1 (a+b)+(a-b)^2}}{sqrt{2} (a-b)}\
a_1 &=& 1-frac{P_1}{(1-a_2) (b-a)}\
b_1 &=& -1+a_1+a_2
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_1 x}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
Note that:
begin{eqnarray}
lim_{brightarrow a_+} a_2 &=& 1+ omega\
a_1 &=& 1-frac{4 a omega}{theta} \
b_1 &=& omega + 1 - frac{4 a omega}{theta}
end{eqnarray}
where $omega := frac{imath}{2} sqrt{frac{P_1}{a}}$ and $theta:=b-a$.
Therefore we have:
begin{eqnarray}
&&theta^{1+omega}cdot y_1(x) =\
&& (x+a)^{frac{omega+1}{2}-frac{2 a omega}{theta}} cdot (x+a +theta)^{frac{1}{2}(-1-omega+frac{4 a}{omega})} cdot theta^{1+omega} F_{2,1}left[
begin{array}{rr}
1+omega & 1- frac{4 a omega}{theta}\
& omega+1-frac{4 a omega}{theta}
end{array};
frac{x+a}{x+a+theta}
right]=\
&&left(1+frac{theta}{x+a}right)^{frac{2 a omega}{theta}} cdot theta^{1+omega} F_{2,1}left[
begin{array}{rr}
1+omega & 1- frac{4 a omega}{theta}\
& omega+1-frac{4 a omega}{theta}
end{array};
frac{x+a}{x+a+theta}
right] underbrace{=}_{theta rightarrow 0}\
&&e^{frac{2 a omega}{x+a}}cdot (x+a) (-4 a omega)^omega U(omega,0;-frac{4a omega}{x+a})
end{eqnarray}
See Compute a limit that involves a hypergeometric function. for explanations.
In case of the second function $(a_1,a_2,b_1) rightarrow (a_1-b_1+1,a_2-b_1+1,2-b_1)$ which is equivalent to $omega rightarrow -omega$
and therefore :
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = (x+a) cdot expleft(pm frac{2 a omega}{x+a}right) cdot U(pmomega,0;mpfrac{4 a omega}{x+a})
end{eqnarray}
where $U$ is the confluent hypergeometric function.
(C) Now let us assume that $P_0=P_1=0$ and $P_2neq 0$. Define $Q:=sqrt{1+4 P_2}$. Then we have:
begin{eqnarray}
&&a_2^4 (a-b)^2+\
&&-2 a_2^3 (Q+1) (a-b)^2+\
&&a_2^2 left(a^2 (4 P_2+3 Q+2)-2 a b (6 P_2+3 Q+2)+b^2 (4 P_2+3 Q+2)right)+\
&&-a_2 left(a^2 (4 P_2+Q+1)-2 a b (2 P_2 (Q+3)+Q+1)+b^2 (4 P_2+Q+1)right)+\
&&-2 a b P_2 (Q+1)=0\
&&hline\
a_1&=& frac{b (a_2 Q+a_2-4 P_2-Q-1)-a (a_2-1) (Q+1)}{(a-b) (-2 a_2+Q+1)}\
b_1&=&a_1+a_2-Q
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_2 x^2}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
Now the calculation of the limit of $b$ going to $a$ is very similar to the case before so we only present the result. We have:
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = left(x+a right)^{frac{1-Q}{2}}cdot expleft(mp frac{asqrt{Q^2-1}}{2(x+a)} right) cdot Uleft(frac{1}{2}(1+Qmpsqrt{Q^2-1}),1+Q;pm frac{asqrt{Q^2-1}}{x+a} right)
end{eqnarray}
where $Q:=sqrt{1+4 P_2}$.
(D) Now let us assume that $P_0$,$P_1$ and $P_2$ are arbitrary subject to $P_1 > 2 a P_2$. Then we have:
begin{eqnarray}
&&a_2^4 (a-b)^2+\
&&-2 a_2^3 (Q+1) (a-b)^2+\
&&a_2^2 left(a^2 (4 P_2+3 Q+2)+2 a (P_1-b (6 P_2+3 Q+2))+b^2 (4 P_2+3 Q+2)+2 b P_1-4 P_0right)+\
&&a_2 left(a^2 (-(4 P_2+Q+1))+2 a (b (2 P_2 (Q+3)+Q+1)-P_1
(Q+1))-b^2 (4 P_2+Q+1)-2 b P_1 (Q+1)+4 P_0 (Q+1)right)+\
&&a (Q+1) (P_1-2 b P_2)+P_1 (b Q+b+P_1)-2 P_0 (2 P_2+Q+1)=0\
&&hline\
&&a_1=frac{-a (a_2-1) (Q+1)+b (a_2 Q+a_2-4 P_2-Q-1)+2 P_1}{(a-b) (-2 a_2+Q+1)}\
&&b_1=a_1+a_2-Q
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_0+P_1 x+P_2 x^2}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
In the limit $b$ going to $a$ we have the following result:
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = left(x+aright)^{frac{1-Q}{2}}cdot expleft(pm frac{R}{x+a}right)cdot Uleft(frac{1}{2}(1+Qpmfrac{-P_1+2 a P_2}{R}),1+Q;mp frac{2 R}{x+a} right)
end{eqnarray}
where $Q:=sqrt{1+4 P_2}$ and $R:=sqrt{P_0-P_1 a+P_2 a^2}$.
Let $a,b,A,B in {mathbb N}$ subject to $(a-b)^2 + (A-B)^2 > 0$.
Now let $a_1,a_2,b_1 in {mathbb R}$ and define:
begin{eqnarray}
P_0 &:=& a^2 (a_1-a_2-1) (a_1-a_2+1)+2 a b (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+b^2 (b_1-2) b_1 \
P_1 &:=& 2 (A (a (a_1-a_2-1) (a_1-a_2+1)+b (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1))+B (a (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+b
(b_1-2) b_1)) \
P_2 &:=& A^2 (a_1-a_2-1) (a_1-a_2+1)+2 A B (2 a_1 a_2-a_1 b_1-a_2 b_1+b_1)+B^2 (b_1-2) b_1
end{eqnarray}
Then the fundamental solutions to the following ODE:
begin{eqnarray}
frac{d^2 y(x)}{d x^2} - (a B-A b)^2frac{left(P_0 + P_1 x + P_2 x^2right)}{4 (a+A x)^2 (b+B x)^2 (a-b+ (A-B)x)^2} cdot y(x) = 0
end{eqnarray}
have the following form:
begin{eqnarray}
&&y_1(x) := (a+A x)^{b_1/2} (b+B x)^{frac{1}{2} (-a_1-a_2+1)} (a+x (A-B)-b)^{frac{1}{2} (a_1+a_2-b_1+1)} , _2F_1left(a_1,a_2;b_1;frac{a+A x}{b+B x}right)\
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!y_2(x) := (a+A x)^{1-frac{b_1}{2}} (b+B x)^{frac{1}{2} (-a_1-a_2-1)+b_1} (a+x (A-B)-b)^{frac{1}{2} (a_1+a_2-b_1+1)} ,
_2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+A x}{b+B x}right)
end{eqnarray}
The following Mathematica code verifies the result:
In[1109]:= A =.; B =.; a =.; b =.; Clear[y1]; Clear[y2]; Clear[v]; x =.;
{A, B, a, b} = RandomInteger[{0, 20}, 4];
v[x_] := (-A b + a B)^2/(
4 (a + A x)^2 (a - b + A x - B x)^2 (b +
B x)^2) (a^2 (-1 + a1 - a2) (1 + a1 - a2) + b^2 (-2 + b1) b1 +
2 a b (2 a1 a2 + b1 - a1 b1 - a2 b1) +
2 (A (a (-1 + a1 - a2) (1 + a1 - a2) +
b (2 a1 a2 + b1 - a1 b1 - a2 b1)) +
B (b (-2 + b1) b1 +
a (2 a1 a2 + b1 - a1 b1 - a2 b1))) x + (A^2 (-1 + a1 -
a2) (1 + a1 - a2) + B^2 (-2 + b1) b1 +
2 A B (2 a1 a2 + b1 - a1 b1 - a2 b1)) x^2);
y1[x_] := (a + A x)^(b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (1 - a1 - a2))
Hypergeometric2F1[a1, a2, b1, (A x + a)^1/(B x + b)^1];
y2[x_] := (a + A x)^(1 - b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (-1 - a1 - a2) + b1)
Hypergeometric2F1[1 + a1 - b1, 1 + a2 - b1,
2 - b1, (A x + a)^1/(B x + b)^1];
FullSimplify[(D[#, {x, 2}] - v[x] #) & /@ {y1[x], y2[x]}]
Out[1114]= {0, 0}
Update 0: The result above can be used to solve the following inverse problem.
Let $A=B=1$. Now let $a,b in {mathbb N}$ and let $P_0,P_1,P_2 in {mathbb N}$ subject to $P_0^2 + P_1^2 + P_2^2 > 0$. Then there always exist certain $a_1,a_2,b_1 in {mathbb R}$ such that the functions $y_{1,2}(x)$ above are fundamental solutions to the following ODE:
begin{eqnarray}
frac{d^2 y(x)}{d x^2} - frac{(P_0+P_1 x+P_2 x^2)}{(x+a)^2(x+b)^2} cdot y(x)=0
end{eqnarray}
Indeed if we set $A=B=1$ and then if we set $a,b in {mathbb N}$ in the top three equations defining $P_0,P_1,P_2$ above we can always solve those equations for $a_1,a_2,b_1$. Here is the Mathematica code that accomplishes that:
In[1473]:= {A, B} = {1, 1}; Clear[y1]; Clear[y2];
y1[x_] := (a + A x)^(b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (1 - a1 - a2))
Hypergeometric2F1[a1, a2, b1, (A x + a)^1/(B x + b)^1];
y2[x_] := (a + A x)^(1 - b1/2) (a - b + (A - B) x)^(
1/2 (1 + a1 + a2 - b1)) (b + B x)^(1/2 (-1 - a1 - a2) + b1)
Hypergeometric2F1[1 + a1 - b1, 1 + a2 - b1,
2 - b1, (A x + a)^1/(B x + b)^1];
{a, b} = RandomInteger[{0, 10}, 2];
{P0, P1, P2} = RandomInteger[{0, 10}, 3];
a1 =.; a2 =.; b1 =.;
subst = FullSimplify[
Solve[{a^2 (-1 + a1 - a2) (1 + a1 - a2) + b^2 (-2 + b1) b1 +
2 a b (2 a1 a2 + b1 - a1 b1 - a2 b1),
2 (A (a (-1 + a1 - a2) (1 + a1 - a2) +
b (2 a1 a2 + b1 - a1 b1 - a2 b1)) +
B (b (-2 + b1) b1 +
a (2 a1 a2 + b1 - a1 b1 - a2 b1))) , (A^2 (-1 + a1 -
a2) (1 + a1 - a2) + B^2 (-2 + b1) b1 +
2 A B (2 a1 a2 + b1 - a1 b1 - a2 b1))} == 4 {P0, P1, P2}, {a1,
a2, b1}]];
subst = Sort[{a1, a2, b1} /. subst, #1[[3]] < #2[[3]] &];
MatrixForm[subst]
aa = FullSimplify[(D[#, {x, 2}] - (
P0 + P1 x + P2 x^2)/((x + a)^2 (x + b)^2) #) & /@ {y1[x],
y2[x]}]
FullSimplify[aa /. Diagonal[Thread[{a1, a2, b1} -> #] & /@ subst[[1]]]]
Out[1483]= {0, 0}
In this particular example we had ${a,b}={9,7}$,${P_0,P_1,P_2}={ 0,4,9}$ and
begin{eqnarray}
left(begin{array}{r}a_1\a_2\b_1end{array}right)=left(
begin{array}{r}frac{1}{2} left(1+sqrt{37}+3 sqrt{46}-sqrt{694}right)\frac{1}{2} left(1-sqrt{1145+12 sqrt{7981}-4 sqrt{37 left(277+3 sqrt{7981}right)}}right)\1-sqrt{694}end{array}right)
end{eqnarray}
Update 1: Now let us go back to Update 0 and let us take some particular examples where we can indeed give closed form solutions .
(A)
If we set $P_2=P_1=0$ and $P_0 neq 0$ then we get the following:
begin{eqnarray}
a_1 &=& 1\
a_2 &=& 1+frac{sqrt{(a-b)^2+4 P_0}}{a-b}\
b_1 &=& a_2
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_0}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& {(a+x)^{frac{1}{2}+frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}} (b+x)^{frac{1}{2}-frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}}\
y_2(x) &=& {(a+x)^{frac{1}{2}-frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}
(b+x)^{frac{1}{2}+frac{sqrt{(a-b)^2+4 text{P0}}}{2 (a-b)}}}
end{eqnarray}
Note that :
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = (x+a) expleft( pm frac{sqrt{P_0}}{x+a}right)
end{eqnarray}
as it should be.
(B) Likewise let use take $P_2=P_0=0$ and $P_1 neq 0$. Then we are getting the following solution:
begin{eqnarray}
a_2 &=& 1-frac{sqrt{sqrt{16 a b P_1^2-4 P_1 (a+b) (a-b)^2+(a-b)^4}-2 P_1 (a+b)+(a-b)^2}}{sqrt{2} (a-b)}\
a_1 &=& 1-frac{P_1}{(1-a_2) (b-a)}\
b_1 &=& -1+a_1+a_2
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_1 x}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
Note that:
begin{eqnarray}
lim_{brightarrow a_+} a_2 &=& 1+ omega\
a_1 &=& 1-frac{4 a omega}{theta} \
b_1 &=& omega + 1 - frac{4 a omega}{theta}
end{eqnarray}
where $omega := frac{imath}{2} sqrt{frac{P_1}{a}}$ and $theta:=b-a$.
Therefore we have:
begin{eqnarray}
&&theta^{1+omega}cdot y_1(x) =\
&& (x+a)^{frac{omega+1}{2}-frac{2 a omega}{theta}} cdot (x+a +theta)^{frac{1}{2}(-1-omega+frac{4 a}{omega})} cdot theta^{1+omega} F_{2,1}left[
begin{array}{rr}
1+omega & 1- frac{4 a omega}{theta}\
& omega+1-frac{4 a omega}{theta}
end{array};
frac{x+a}{x+a+theta}
right]=\
&&left(1+frac{theta}{x+a}right)^{frac{2 a omega}{theta}} cdot theta^{1+omega} F_{2,1}left[
begin{array}{rr}
1+omega & 1- frac{4 a omega}{theta}\
& omega+1-frac{4 a omega}{theta}
end{array};
frac{x+a}{x+a+theta}
right] underbrace{=}_{theta rightarrow 0}\
&&e^{frac{2 a omega}{x+a}}cdot (x+a) (-4 a omega)^omega U(omega,0;-frac{4a omega}{x+a})
end{eqnarray}
See Compute a limit that involves a hypergeometric function. for explanations.
In case of the second function $(a_1,a_2,b_1) rightarrow (a_1-b_1+1,a_2-b_1+1,2-b_1)$ which is equivalent to $omega rightarrow -omega$
and therefore :
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = (x+a) cdot expleft(pm frac{2 a omega}{x+a}right) cdot U(pmomega,0;mpfrac{4 a omega}{x+a})
end{eqnarray}
where $U$ is the confluent hypergeometric function.
(C) Now let us assume that $P_0=P_1=0$ and $P_2neq 0$. Define $Q:=sqrt{1+4 P_2}$. Then we have:
begin{eqnarray}
&&a_2^4 (a-b)^2+\
&&-2 a_2^3 (Q+1) (a-b)^2+\
&&a_2^2 left(a^2 (4 P_2+3 Q+2)-2 a b (6 P_2+3 Q+2)+b^2 (4 P_2+3 Q+2)right)+\
&&-a_2 left(a^2 (4 P_2+Q+1)-2 a b (2 P_2 (Q+3)+Q+1)+b^2 (4 P_2+Q+1)right)+\
&&-2 a b P_2 (Q+1)=0\
&&hline\
a_1&=& frac{b (a_2 Q+a_2-4 P_2-Q-1)-a (a_2-1) (Q+1)}{(a-b) (-2 a_2+Q+1)}\
b_1&=&a_1+a_2-Q
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_2 x^2}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
Now the calculation of the limit of $b$ going to $a$ is very similar to the case before so we only present the result. We have:
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = left(x+a right)^{frac{1-Q}{2}}cdot expleft(mp frac{asqrt{Q^2-1}}{2(x+a)} right) cdot Uleft(frac{1}{2}(1+Qmpsqrt{Q^2-1}),1+Q;pm frac{asqrt{Q^2-1}}{x+a} right)
end{eqnarray}
where $Q:=sqrt{1+4 P_2}$.
(D) Now let us assume that $P_0$,$P_1$ and $P_2$ are arbitrary subject to $P_1 > 2 a P_2$. Then we have:
begin{eqnarray}
&&a_2^4 (a-b)^2+\
&&-2 a_2^3 (Q+1) (a-b)^2+\
&&a_2^2 left(a^2 (4 P_2+3 Q+2)+2 a (P_1-b (6 P_2+3 Q+2))+b^2 (4 P_2+3 Q+2)+2 b P_1-4 P_0right)+\
&&a_2 left(a^2 (-(4 P_2+Q+1))+2 a (b (2 P_2 (Q+3)+Q+1)-P_1
(Q+1))-b^2 (4 P_2+Q+1)-2 b P_1 (Q+1)+4 P_0 (Q+1)right)+\
&&a (Q+1) (P_1-2 b P_2)+P_1 (b Q+b+P_1)-2 P_0 (2 P_2+Q+1)=0\
&&hline\
&&a_1=frac{-a (a_2-1) (Q+1)+b (a_2 Q+a_2-4 P_2-Q-1)+2 P_1}{(a-b) (-2 a_2+Q+1)}\
&&b_1=a_1+a_2-Q
end{eqnarray}
Therefore the solutions to
begin{equation}
frac{d^2 y(x)}{d x^2} - frac{P_0+P_1 x+P_2 x^2}{(x+a)^2(x+b)^2} y(x)=0
end{equation}
are
begin{eqnarray}
y_1(x) &=& (a+x)^{b_1/2} (b+x)^{frac{1}{2} (-a_1-a_2+1)} , _2F_1left(a_1,a_2;b_1;frac{a+x}{b+x}right)\
y_2(x) &=& (a+x)^{1-frac{b_1}{2}} (b+x)^{frac{1}{2} (-a_1-a_2-1)+b_1} , _2F_1left(a_1-b_1+1,a_2-b_1+1;2-b_1;frac{a+x}{b+x}right)
end{eqnarray}
In the limit $b$ going to $a$ we have the following result:
begin{eqnarray}
lim_{brightarrow a} y_{1,2}(x) = left(x+aright)^{frac{1-Q}{2}}cdot expleft(pm frac{R}{x+a}right)cdot Uleft(frac{1}{2}(1+Qpmfrac{-P_1+2 a P_2}{R}),1+Q;mp frac{2 R}{x+a} right)
end{eqnarray}
where $Q:=sqrt{1+4 P_2}$ and $R:=sqrt{P_0-P_1 a+P_2 a^2}$.
edited Sep 14 at 15:24
answered Sep 10 at 14:09
Przemo
4,1271928
4,1271928
In fact science.fire.ustc.edu.cn/download/download1/… already seckill most of your long text. Anyway, you still give an important special case that a normal form of Heun's Equation can reduce to the Gaussian hypergeometric equation.
– doraemonpaul
Oct 27 at 12:59
add a comment |
In fact science.fire.ustc.edu.cn/download/download1/… already seckill most of your long text. Anyway, you still give an important special case that a normal form of Heun's Equation can reduce to the Gaussian hypergeometric equation.
– doraemonpaul
Oct 27 at 12:59
In fact science.fire.ustc.edu.cn/download/download1/… already seckill most of your long text. Anyway, you still give an important special case that a normal form of Heun's Equation can reduce to the Gaussian hypergeometric equation.
– doraemonpaul
Oct 27 at 12:59
In fact science.fire.ustc.edu.cn/download/download1/… already seckill most of your long text. Anyway, you still give an important special case that a normal form of Heun's Equation can reduce to the Gaussian hypergeometric equation.
– doraemonpaul
Oct 27 at 12:59
add a comment |
up vote
0
down vote
Again by applying the same algorithm to the Gaussian hypergeometric differential equation, i.e. by rescaling the ODE in question by $x rightarrow f(x)$,$d/dx rightarrow 1/f^{'}(x) d/dx$ with $f(x):=A x^n$ and then by eliminating the term proportional to the first derivative we found the following result.
Let $a$,$b$,$c$,$A$ and $n$ be real numbers. Then the following ODE:
begin{eqnarray}
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!y^{''}(x) + left(frac{-A^2 x^{2 n} left(a^2 n^2-2 a b n^2+b^2 n^2-1right)+2 A x^n left(n^2 (a (c-2 b)+(b-1) c+1)-1right)-(c-1)^2 n^2+1}{4 x^2 left(1-A x^nright)^2}right) y(x)=0
end{eqnarray}
is solved by $y(x) = C_1 y_1(x) + C_2 y_2(x)$ where :
begin{eqnarray}
y_1(x)&=&x^{frac{1}{2} ((c-1) n+1)} left(1-A x^nright)^{frac{1}{2} (a+b-c+1)} , _2F_1left(a,b;c;A x^nright)\
y_2(x)&=&x^{frac{1}{2} (1-(c-1) n)} left(1-A x^nright)^{frac{1}{2} (a+b-c+1)} , _2F_1left(a-c+1,b-c+1;2-c;A x^nright)
end{eqnarray}
The following Mathematica code neatly verifies the result:
In[759]:= Clear[y1]; Clear[y2]; A =.; n =.; a =.; b =.; c =.;
y1[x_] = x^(1/2 ((1 + (-1 + c) n) )) (1 - A x^n)^(
1/2 ((1 + a + b - c))) Hypergeometric2F1[a, b, c, A x^n];
y2[x_] = x^(1/2 ((1 - (-1 + c) n) )) (1 - A x^n)^(
1/2 ((1 + a + b - c)))
Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c, A x^n];
FullSimplify[((
1 - (-1 + c)^2 n^2 +
2 A (-1 + (1 + (-1 + b) c + a (-2 b + c)) n^2) x^n -
A^2 (-1 + a^2 n^2 - 2 a b n^2 + b^2 n^2) x^(2 n))/(
4 x^2 (1 - A x^n)^2)) # + D[#, {x, 2}]] & /@ {y1[x], y2[x]}
Out[762]= {0, 0}
add a comment |
up vote
0
down vote
Again by applying the same algorithm to the Gaussian hypergeometric differential equation, i.e. by rescaling the ODE in question by $x rightarrow f(x)$,$d/dx rightarrow 1/f^{'}(x) d/dx$ with $f(x):=A x^n$ and then by eliminating the term proportional to the first derivative we found the following result.
Let $a$,$b$,$c$,$A$ and $n$ be real numbers. Then the following ODE:
begin{eqnarray}
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!y^{''}(x) + left(frac{-A^2 x^{2 n} left(a^2 n^2-2 a b n^2+b^2 n^2-1right)+2 A x^n left(n^2 (a (c-2 b)+(b-1) c+1)-1right)-(c-1)^2 n^2+1}{4 x^2 left(1-A x^nright)^2}right) y(x)=0
end{eqnarray}
is solved by $y(x) = C_1 y_1(x) + C_2 y_2(x)$ where :
begin{eqnarray}
y_1(x)&=&x^{frac{1}{2} ((c-1) n+1)} left(1-A x^nright)^{frac{1}{2} (a+b-c+1)} , _2F_1left(a,b;c;A x^nright)\
y_2(x)&=&x^{frac{1}{2} (1-(c-1) n)} left(1-A x^nright)^{frac{1}{2} (a+b-c+1)} , _2F_1left(a-c+1,b-c+1;2-c;A x^nright)
end{eqnarray}
The following Mathematica code neatly verifies the result:
In[759]:= Clear[y1]; Clear[y2]; A =.; n =.; a =.; b =.; c =.;
y1[x_] = x^(1/2 ((1 + (-1 + c) n) )) (1 - A x^n)^(
1/2 ((1 + a + b - c))) Hypergeometric2F1[a, b, c, A x^n];
y2[x_] = x^(1/2 ((1 - (-1 + c) n) )) (1 - A x^n)^(
1/2 ((1 + a + b - c)))
Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c, A x^n];
FullSimplify[((
1 - (-1 + c)^2 n^2 +
2 A (-1 + (1 + (-1 + b) c + a (-2 b + c)) n^2) x^n -
A^2 (-1 + a^2 n^2 - 2 a b n^2 + b^2 n^2) x^(2 n))/(
4 x^2 (1 - A x^n)^2)) # + D[#, {x, 2}]] & /@ {y1[x], y2[x]}
Out[762]= {0, 0}
add a comment |
up vote
0
down vote
up vote
0
down vote
Again by applying the same algorithm to the Gaussian hypergeometric differential equation, i.e. by rescaling the ODE in question by $x rightarrow f(x)$,$d/dx rightarrow 1/f^{'}(x) d/dx$ with $f(x):=A x^n$ and then by eliminating the term proportional to the first derivative we found the following result.
Let $a$,$b$,$c$,$A$ and $n$ be real numbers. Then the following ODE:
begin{eqnarray}
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!y^{''}(x) + left(frac{-A^2 x^{2 n} left(a^2 n^2-2 a b n^2+b^2 n^2-1right)+2 A x^n left(n^2 (a (c-2 b)+(b-1) c+1)-1right)-(c-1)^2 n^2+1}{4 x^2 left(1-A x^nright)^2}right) y(x)=0
end{eqnarray}
is solved by $y(x) = C_1 y_1(x) + C_2 y_2(x)$ where :
begin{eqnarray}
y_1(x)&=&x^{frac{1}{2} ((c-1) n+1)} left(1-A x^nright)^{frac{1}{2} (a+b-c+1)} , _2F_1left(a,b;c;A x^nright)\
y_2(x)&=&x^{frac{1}{2} (1-(c-1) n)} left(1-A x^nright)^{frac{1}{2} (a+b-c+1)} , _2F_1left(a-c+1,b-c+1;2-c;A x^nright)
end{eqnarray}
The following Mathematica code neatly verifies the result:
In[759]:= Clear[y1]; Clear[y2]; A =.; n =.; a =.; b =.; c =.;
y1[x_] = x^(1/2 ((1 + (-1 + c) n) )) (1 - A x^n)^(
1/2 ((1 + a + b - c))) Hypergeometric2F1[a, b, c, A x^n];
y2[x_] = x^(1/2 ((1 - (-1 + c) n) )) (1 - A x^n)^(
1/2 ((1 + a + b - c)))
Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c, A x^n];
FullSimplify[((
1 - (-1 + c)^2 n^2 +
2 A (-1 + (1 + (-1 + b) c + a (-2 b + c)) n^2) x^n -
A^2 (-1 + a^2 n^2 - 2 a b n^2 + b^2 n^2) x^(2 n))/(
4 x^2 (1 - A x^n)^2)) # + D[#, {x, 2}]] & /@ {y1[x], y2[x]}
Out[762]= {0, 0}
Again by applying the same algorithm to the Gaussian hypergeometric differential equation, i.e. by rescaling the ODE in question by $x rightarrow f(x)$,$d/dx rightarrow 1/f^{'}(x) d/dx$ with $f(x):=A x^n$ and then by eliminating the term proportional to the first derivative we found the following result.
Let $a$,$b$,$c$,$A$ and $n$ be real numbers. Then the following ODE:
begin{eqnarray}
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!y^{''}(x) + left(frac{-A^2 x^{2 n} left(a^2 n^2-2 a b n^2+b^2 n^2-1right)+2 A x^n left(n^2 (a (c-2 b)+(b-1) c+1)-1right)-(c-1)^2 n^2+1}{4 x^2 left(1-A x^nright)^2}right) y(x)=0
end{eqnarray}
is solved by $y(x) = C_1 y_1(x) + C_2 y_2(x)$ where :
begin{eqnarray}
y_1(x)&=&x^{frac{1}{2} ((c-1) n+1)} left(1-A x^nright)^{frac{1}{2} (a+b-c+1)} , _2F_1left(a,b;c;A x^nright)\
y_2(x)&=&x^{frac{1}{2} (1-(c-1) n)} left(1-A x^nright)^{frac{1}{2} (a+b-c+1)} , _2F_1left(a-c+1,b-c+1;2-c;A x^nright)
end{eqnarray}
The following Mathematica code neatly verifies the result:
In[759]:= Clear[y1]; Clear[y2]; A =.; n =.; a =.; b =.; c =.;
y1[x_] = x^(1/2 ((1 + (-1 + c) n) )) (1 - A x^n)^(
1/2 ((1 + a + b - c))) Hypergeometric2F1[a, b, c, A x^n];
y2[x_] = x^(1/2 ((1 - (-1 + c) n) )) (1 - A x^n)^(
1/2 ((1 + a + b - c)))
Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c, A x^n];
FullSimplify[((
1 - (-1 + c)^2 n^2 +
2 A (-1 + (1 + (-1 + b) c + a (-2 b + c)) n^2) x^n -
A^2 (-1 + a^2 n^2 - 2 a b n^2 + b^2 n^2) x^(2 n))/(
4 x^2 (1 - A x^n)^2)) # + D[#, {x, 2}]] & /@ {y1[x], y2[x]}
Out[762]= {0, 0}
answered Oct 3 at 17:39
Przemo
4,1271928
4,1271928
add a comment |
add a comment |
up vote
0
down vote
Let $A$,$B$,$C$, $D$ and $n$ be integers. Let $P_0$,$P_1$ and $P_2$ be another integers. Now let $a$,$b$ and $c$ be complex numbers such that such that:
begin{eqnarray}
P_0&=&B^2 left(a^2-2 a b+b^2-1right)+2 B D (2 a b-a c-b c+c)+(c-2) c D^2\
P_1&=&2 left(A left(B left(a^2-2 a b+b^2-1right)+D (2 a b-a c-b c+c)right)+C (a B (2 b-c)+c (-b B+B+(c-2)
D))right)\
P_2&=&A^2 left(a^2-2 a b+b^2-1right)+2 A C (2 a b-a c-b c+c)+(c-2) c C^2
end{eqnarray}
Consider the following ODE:
begin{eqnarray}
y^{''}(x) + frac{n}{x} y^{'}(x) + left( frac{n(n-2)}{4 x^2} - (B C - A D)^2 frac{P_0 + P_1 x+P_2 x^2}{4(B+A x)^2(B-D+(A-C)x)^2(D+C x)^2}right)y(x)=0
end{eqnarray}
then
begin{eqnarray}
&&y(x)= x^{-n/2} (A x+B)^{c/2} (C x+D)^{frac{1}{2} (-a-b+1)} (A x+B-C x-D)^{frac{1}{2} (a+b-c+1)} cdot \
&&left( C_2 left(frac{A x+B}{C x+D}right)^{1-c} , _2F_1left(a-c+1,b-c+1;2-c;frac{B+A x}{D+C x}right)+C_1 , _2F_1left(a,b;c;frac{B+A x}{D+C x}right)right)
end{eqnarray}
In[13]:= A =.; B =.; CC =.; DD =.; a =.; b =.; c =.; Clear[m]; n =.;
x =.;
{A, B, CC, DD} = RandomSample[Range[1, 10], 4];
{P0, P1, P2} = RandomSample[Range[1, 10], 3];
subst = Solve[{(-1 + a^2 - 2 a b + b^2) B^2 +
2 B (2 a b + c - a c - b c) DD + (-2 + c) c DD^2,
2 (A ((-1 + a^2 - 2 a b + b^2) B + (2 a b + c - a c - b c) DD) +
CC (a B (2 b - c) + c (B - b B + (-2 + c) DD))),
A^2 (-1 + a^2 - 2 a b + b^2) +
2 A (2 a b + c - a c - b c) CC + (-2 + c) c CC^2} == {P0, P1,
P2}, {a, b, c}];
{a, b, c} = {a, b, c} /. subst[[1]];
m[x_] = x^(-n/2) (CC x + DD)^(1/2 (1 - a - b)) (B + A x)^(
c/2) (B - DD + A x - CC x)^(1/2 (1 + a + b - c));
eX = (D[#, {x, 2}] +
n/x D[#,
x] + (((-2 + n) n)/(
4 x^2) - ((B CC - A DD)^2 (P0 + P1 x + P2 x^2))/(
4 (B + A x)^2 (B - DD + A x - CC x)^2 (DD +
CC x)^2)) #) & /@ {m[
x] (C[1] Hypergeometric2F1[a, b, c, (A x + B)/(CC x + DD)] +
C[2] ((A x + B)/(CC x + DD))^(1 - c)
Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c, (A x + B)/(
CC x + DD)])};
{n, x} = RandomReal[{1, 10}, 2, WorkingPrecision -> 50];
Simplify[eX]
Out[21]= {(0.*10^-48 + 0.*10^-49 I) C[
1] + (0.*10^-48 + 0.*10^-48 I) C[2]}
add a comment |
up vote
0
down vote
Let $A$,$B$,$C$, $D$ and $n$ be integers. Let $P_0$,$P_1$ and $P_2$ be another integers. Now let $a$,$b$ and $c$ be complex numbers such that such that:
begin{eqnarray}
P_0&=&B^2 left(a^2-2 a b+b^2-1right)+2 B D (2 a b-a c-b c+c)+(c-2) c D^2\
P_1&=&2 left(A left(B left(a^2-2 a b+b^2-1right)+D (2 a b-a c-b c+c)right)+C (a B (2 b-c)+c (-b B+B+(c-2)
D))right)\
P_2&=&A^2 left(a^2-2 a b+b^2-1right)+2 A C (2 a b-a c-b c+c)+(c-2) c C^2
end{eqnarray}
Consider the following ODE:
begin{eqnarray}
y^{''}(x) + frac{n}{x} y^{'}(x) + left( frac{n(n-2)}{4 x^2} - (B C - A D)^2 frac{P_0 + P_1 x+P_2 x^2}{4(B+A x)^2(B-D+(A-C)x)^2(D+C x)^2}right)y(x)=0
end{eqnarray}
then
begin{eqnarray}
&&y(x)= x^{-n/2} (A x+B)^{c/2} (C x+D)^{frac{1}{2} (-a-b+1)} (A x+B-C x-D)^{frac{1}{2} (a+b-c+1)} cdot \
&&left( C_2 left(frac{A x+B}{C x+D}right)^{1-c} , _2F_1left(a-c+1,b-c+1;2-c;frac{B+A x}{D+C x}right)+C_1 , _2F_1left(a,b;c;frac{B+A x}{D+C x}right)right)
end{eqnarray}
In[13]:= A =.; B =.; CC =.; DD =.; a =.; b =.; c =.; Clear[m]; n =.;
x =.;
{A, B, CC, DD} = RandomSample[Range[1, 10], 4];
{P0, P1, P2} = RandomSample[Range[1, 10], 3];
subst = Solve[{(-1 + a^2 - 2 a b + b^2) B^2 +
2 B (2 a b + c - a c - b c) DD + (-2 + c) c DD^2,
2 (A ((-1 + a^2 - 2 a b + b^2) B + (2 a b + c - a c - b c) DD) +
CC (a B (2 b - c) + c (B - b B + (-2 + c) DD))),
A^2 (-1 + a^2 - 2 a b + b^2) +
2 A (2 a b + c - a c - b c) CC + (-2 + c) c CC^2} == {P0, P1,
P2}, {a, b, c}];
{a, b, c} = {a, b, c} /. subst[[1]];
m[x_] = x^(-n/2) (CC x + DD)^(1/2 (1 - a - b)) (B + A x)^(
c/2) (B - DD + A x - CC x)^(1/2 (1 + a + b - c));
eX = (D[#, {x, 2}] +
n/x D[#,
x] + (((-2 + n) n)/(
4 x^2) - ((B CC - A DD)^2 (P0 + P1 x + P2 x^2))/(
4 (B + A x)^2 (B - DD + A x - CC x)^2 (DD +
CC x)^2)) #) & /@ {m[
x] (C[1] Hypergeometric2F1[a, b, c, (A x + B)/(CC x + DD)] +
C[2] ((A x + B)/(CC x + DD))^(1 - c)
Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c, (A x + B)/(
CC x + DD)])};
{n, x} = RandomReal[{1, 10}, 2, WorkingPrecision -> 50];
Simplify[eX]
Out[21]= {(0.*10^-48 + 0.*10^-49 I) C[
1] + (0.*10^-48 + 0.*10^-48 I) C[2]}
add a comment |
up vote
0
down vote
up vote
0
down vote
Let $A$,$B$,$C$, $D$ and $n$ be integers. Let $P_0$,$P_1$ and $P_2$ be another integers. Now let $a$,$b$ and $c$ be complex numbers such that such that:
begin{eqnarray}
P_0&=&B^2 left(a^2-2 a b+b^2-1right)+2 B D (2 a b-a c-b c+c)+(c-2) c D^2\
P_1&=&2 left(A left(B left(a^2-2 a b+b^2-1right)+D (2 a b-a c-b c+c)right)+C (a B (2 b-c)+c (-b B+B+(c-2)
D))right)\
P_2&=&A^2 left(a^2-2 a b+b^2-1right)+2 A C (2 a b-a c-b c+c)+(c-2) c C^2
end{eqnarray}
Consider the following ODE:
begin{eqnarray}
y^{''}(x) + frac{n}{x} y^{'}(x) + left( frac{n(n-2)}{4 x^2} - (B C - A D)^2 frac{P_0 + P_1 x+P_2 x^2}{4(B+A x)^2(B-D+(A-C)x)^2(D+C x)^2}right)y(x)=0
end{eqnarray}
then
begin{eqnarray}
&&y(x)= x^{-n/2} (A x+B)^{c/2} (C x+D)^{frac{1}{2} (-a-b+1)} (A x+B-C x-D)^{frac{1}{2} (a+b-c+1)} cdot \
&&left( C_2 left(frac{A x+B}{C x+D}right)^{1-c} , _2F_1left(a-c+1,b-c+1;2-c;frac{B+A x}{D+C x}right)+C_1 , _2F_1left(a,b;c;frac{B+A x}{D+C x}right)right)
end{eqnarray}
In[13]:= A =.; B =.; CC =.; DD =.; a =.; b =.; c =.; Clear[m]; n =.;
x =.;
{A, B, CC, DD} = RandomSample[Range[1, 10], 4];
{P0, P1, P2} = RandomSample[Range[1, 10], 3];
subst = Solve[{(-1 + a^2 - 2 a b + b^2) B^2 +
2 B (2 a b + c - a c - b c) DD + (-2 + c) c DD^2,
2 (A ((-1 + a^2 - 2 a b + b^2) B + (2 a b + c - a c - b c) DD) +
CC (a B (2 b - c) + c (B - b B + (-2 + c) DD))),
A^2 (-1 + a^2 - 2 a b + b^2) +
2 A (2 a b + c - a c - b c) CC + (-2 + c) c CC^2} == {P0, P1,
P2}, {a, b, c}];
{a, b, c} = {a, b, c} /. subst[[1]];
m[x_] = x^(-n/2) (CC x + DD)^(1/2 (1 - a - b)) (B + A x)^(
c/2) (B - DD + A x - CC x)^(1/2 (1 + a + b - c));
eX = (D[#, {x, 2}] +
n/x D[#,
x] + (((-2 + n) n)/(
4 x^2) - ((B CC - A DD)^2 (P0 + P1 x + P2 x^2))/(
4 (B + A x)^2 (B - DD + A x - CC x)^2 (DD +
CC x)^2)) #) & /@ {m[
x] (C[1] Hypergeometric2F1[a, b, c, (A x + B)/(CC x + DD)] +
C[2] ((A x + B)/(CC x + DD))^(1 - c)
Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c, (A x + B)/(
CC x + DD)])};
{n, x} = RandomReal[{1, 10}, 2, WorkingPrecision -> 50];
Simplify[eX]
Out[21]= {(0.*10^-48 + 0.*10^-49 I) C[
1] + (0.*10^-48 + 0.*10^-48 I) C[2]}
Let $A$,$B$,$C$, $D$ and $n$ be integers. Let $P_0$,$P_1$ and $P_2$ be another integers. Now let $a$,$b$ and $c$ be complex numbers such that such that:
begin{eqnarray}
P_0&=&B^2 left(a^2-2 a b+b^2-1right)+2 B D (2 a b-a c-b c+c)+(c-2) c D^2\
P_1&=&2 left(A left(B left(a^2-2 a b+b^2-1right)+D (2 a b-a c-b c+c)right)+C (a B (2 b-c)+c (-b B+B+(c-2)
D))right)\
P_2&=&A^2 left(a^2-2 a b+b^2-1right)+2 A C (2 a b-a c-b c+c)+(c-2) c C^2
end{eqnarray}
Consider the following ODE:
begin{eqnarray}
y^{''}(x) + frac{n}{x} y^{'}(x) + left( frac{n(n-2)}{4 x^2} - (B C - A D)^2 frac{P_0 + P_1 x+P_2 x^2}{4(B+A x)^2(B-D+(A-C)x)^2(D+C x)^2}right)y(x)=0
end{eqnarray}
then
begin{eqnarray}
&&y(x)= x^{-n/2} (A x+B)^{c/2} (C x+D)^{frac{1}{2} (-a-b+1)} (A x+B-C x-D)^{frac{1}{2} (a+b-c+1)} cdot \
&&left( C_2 left(frac{A x+B}{C x+D}right)^{1-c} , _2F_1left(a-c+1,b-c+1;2-c;frac{B+A x}{D+C x}right)+C_1 , _2F_1left(a,b;c;frac{B+A x}{D+C x}right)right)
end{eqnarray}
In[13]:= A =.; B =.; CC =.; DD =.; a =.; b =.; c =.; Clear[m]; n =.;
x =.;
{A, B, CC, DD} = RandomSample[Range[1, 10], 4];
{P0, P1, P2} = RandomSample[Range[1, 10], 3];
subst = Solve[{(-1 + a^2 - 2 a b + b^2) B^2 +
2 B (2 a b + c - a c - b c) DD + (-2 + c) c DD^2,
2 (A ((-1 + a^2 - 2 a b + b^2) B + (2 a b + c - a c - b c) DD) +
CC (a B (2 b - c) + c (B - b B + (-2 + c) DD))),
A^2 (-1 + a^2 - 2 a b + b^2) +
2 A (2 a b + c - a c - b c) CC + (-2 + c) c CC^2} == {P0, P1,
P2}, {a, b, c}];
{a, b, c} = {a, b, c} /. subst[[1]];
m[x_] = x^(-n/2) (CC x + DD)^(1/2 (1 - a - b)) (B + A x)^(
c/2) (B - DD + A x - CC x)^(1/2 (1 + a + b - c));
eX = (D[#, {x, 2}] +
n/x D[#,
x] + (((-2 + n) n)/(
4 x^2) - ((B CC - A DD)^2 (P0 + P1 x + P2 x^2))/(
4 (B + A x)^2 (B - DD + A x - CC x)^2 (DD +
CC x)^2)) #) & /@ {m[
x] (C[1] Hypergeometric2F1[a, b, c, (A x + B)/(CC x + DD)] +
C[2] ((A x + B)/(CC x + DD))^(1 - c)
Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c, (A x + B)/(
CC x + DD)])};
{n, x} = RandomReal[{1, 10}, 2, WorkingPrecision -> 50];
Simplify[eX]
Out[21]= {(0.*10^-48 + 0.*10^-49 I) C[
1] + (0.*10^-48 + 0.*10^-48 I) C[2]}
answered Nov 16 at 18:00
Przemo
4,1271928
4,1271928
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2899727%2flooking-for-closed-form-solutions-to-linear-ordinary-differential-equations-with%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown