Showing Lemma's Fatou for functions not necessarily not negative.












1












$begingroup$


Let $g$ integrable function on $E$ measurable set.
Let $(f_n)$ measurable functions and $|f_n|leq g$ for all $n$.
Show that $int_{E} liminf f_nleq liminf int_{E} f_nleq limsup int_{E} f_nleq int_{E}limsup f_n$.



I have a doubt.



with $(f_n+g)$ and Fatou, $int liminf (f_n+g)leq liminf int (f_n+g)$



Now. Is it true that $ liminf (f_n+g)= (liminf f_n)+g$? I ask this, well, if it's true then $ int liminf (f_n+g)= int [(liminf f_n)+g]=intliminf f_n+int g$ and $liminf int (f_n+g)=liminf (int f_n+int g)=liminf int f_n+int g$ and so
$int liminf f_n+int gleq liminf int f_n+int g$, and $g$ integrable, implies $int liminf f_nleq liminf int f_n$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    for a proof of $liminf (f_n+g)= (liminf f_n)+g$ see proposition 2.3 in this paper. Now choose $b_n=b$ for all $ninBbb N$ and you get the stated equality
    $endgroup$
    – Masacroso
    Dec 9 '18 at 22:28












  • $begingroup$
    proposition 2.3. Also works with secuenque of functions?
    $endgroup$
    – eraldcoil
    Dec 9 '18 at 22:49






  • 1




    $begingroup$
    it is a point-wise sequence of functions, that is $liminf (f_n+g)= (liminf f_n)+g$ means that $liminf (f_n(x)+g(x))= (liminf f_n(x))+g(x)$ for any chosen $xin E$
    $endgroup$
    – Masacroso
    Dec 9 '18 at 22:52
















1












$begingroup$


Let $g$ integrable function on $E$ measurable set.
Let $(f_n)$ measurable functions and $|f_n|leq g$ for all $n$.
Show that $int_{E} liminf f_nleq liminf int_{E} f_nleq limsup int_{E} f_nleq int_{E}limsup f_n$.



I have a doubt.



with $(f_n+g)$ and Fatou, $int liminf (f_n+g)leq liminf int (f_n+g)$



Now. Is it true that $ liminf (f_n+g)= (liminf f_n)+g$? I ask this, well, if it's true then $ int liminf (f_n+g)= int [(liminf f_n)+g]=intliminf f_n+int g$ and $liminf int (f_n+g)=liminf (int f_n+int g)=liminf int f_n+int g$ and so
$int liminf f_n+int gleq liminf int f_n+int g$, and $g$ integrable, implies $int liminf f_nleq liminf int f_n$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    for a proof of $liminf (f_n+g)= (liminf f_n)+g$ see proposition 2.3 in this paper. Now choose $b_n=b$ for all $ninBbb N$ and you get the stated equality
    $endgroup$
    – Masacroso
    Dec 9 '18 at 22:28












  • $begingroup$
    proposition 2.3. Also works with secuenque of functions?
    $endgroup$
    – eraldcoil
    Dec 9 '18 at 22:49






  • 1




    $begingroup$
    it is a point-wise sequence of functions, that is $liminf (f_n+g)= (liminf f_n)+g$ means that $liminf (f_n(x)+g(x))= (liminf f_n(x))+g(x)$ for any chosen $xin E$
    $endgroup$
    – Masacroso
    Dec 9 '18 at 22:52














1












1








1





$begingroup$


Let $g$ integrable function on $E$ measurable set.
Let $(f_n)$ measurable functions and $|f_n|leq g$ for all $n$.
Show that $int_{E} liminf f_nleq liminf int_{E} f_nleq limsup int_{E} f_nleq int_{E}limsup f_n$.



I have a doubt.



with $(f_n+g)$ and Fatou, $int liminf (f_n+g)leq liminf int (f_n+g)$



Now. Is it true that $ liminf (f_n+g)= (liminf f_n)+g$? I ask this, well, if it's true then $ int liminf (f_n+g)= int [(liminf f_n)+g]=intliminf f_n+int g$ and $liminf int (f_n+g)=liminf (int f_n+int g)=liminf int f_n+int g$ and so
$int liminf f_n+int gleq liminf int f_n+int g$, and $g$ integrable, implies $int liminf f_nleq liminf int f_n$










share|cite|improve this question









$endgroup$




Let $g$ integrable function on $E$ measurable set.
Let $(f_n)$ measurable functions and $|f_n|leq g$ for all $n$.
Show that $int_{E} liminf f_nleq liminf int_{E} f_nleq limsup int_{E} f_nleq int_{E}limsup f_n$.



I have a doubt.



with $(f_n+g)$ and Fatou, $int liminf (f_n+g)leq liminf int (f_n+g)$



Now. Is it true that $ liminf (f_n+g)= (liminf f_n)+g$? I ask this, well, if it's true then $ int liminf (f_n+g)= int [(liminf f_n)+g]=intliminf f_n+int g$ and $liminf int (f_n+g)=liminf (int f_n+int g)=liminf int f_n+int g$ and so
$int liminf f_n+int gleq liminf int f_n+int g$, and $g$ integrable, implies $int liminf f_nleq liminf int f_n$







real-analysis measure-theory lebesgue-integral






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 9 '18 at 22:20









eraldcoileraldcoil

395211




395211








  • 1




    $begingroup$
    for a proof of $liminf (f_n+g)= (liminf f_n)+g$ see proposition 2.3 in this paper. Now choose $b_n=b$ for all $ninBbb N$ and you get the stated equality
    $endgroup$
    – Masacroso
    Dec 9 '18 at 22:28












  • $begingroup$
    proposition 2.3. Also works with secuenque of functions?
    $endgroup$
    – eraldcoil
    Dec 9 '18 at 22:49






  • 1




    $begingroup$
    it is a point-wise sequence of functions, that is $liminf (f_n+g)= (liminf f_n)+g$ means that $liminf (f_n(x)+g(x))= (liminf f_n(x))+g(x)$ for any chosen $xin E$
    $endgroup$
    – Masacroso
    Dec 9 '18 at 22:52














  • 1




    $begingroup$
    for a proof of $liminf (f_n+g)= (liminf f_n)+g$ see proposition 2.3 in this paper. Now choose $b_n=b$ for all $ninBbb N$ and you get the stated equality
    $endgroup$
    – Masacroso
    Dec 9 '18 at 22:28












  • $begingroup$
    proposition 2.3. Also works with secuenque of functions?
    $endgroup$
    – eraldcoil
    Dec 9 '18 at 22:49






  • 1




    $begingroup$
    it is a point-wise sequence of functions, that is $liminf (f_n+g)= (liminf f_n)+g$ means that $liminf (f_n(x)+g(x))= (liminf f_n(x))+g(x)$ for any chosen $xin E$
    $endgroup$
    – Masacroso
    Dec 9 '18 at 22:52








1




1




$begingroup$
for a proof of $liminf (f_n+g)= (liminf f_n)+g$ see proposition 2.3 in this paper. Now choose $b_n=b$ for all $ninBbb N$ and you get the stated equality
$endgroup$
– Masacroso
Dec 9 '18 at 22:28






$begingroup$
for a proof of $liminf (f_n+g)= (liminf f_n)+g$ see proposition 2.3 in this paper. Now choose $b_n=b$ for all $ninBbb N$ and you get the stated equality
$endgroup$
– Masacroso
Dec 9 '18 at 22:28














$begingroup$
proposition 2.3. Also works with secuenque of functions?
$endgroup$
– eraldcoil
Dec 9 '18 at 22:49




$begingroup$
proposition 2.3. Also works with secuenque of functions?
$endgroup$
– eraldcoil
Dec 9 '18 at 22:49




1




1




$begingroup$
it is a point-wise sequence of functions, that is $liminf (f_n+g)= (liminf f_n)+g$ means that $liminf (f_n(x)+g(x))= (liminf f_n(x))+g(x)$ for any chosen $xin E$
$endgroup$
– Masacroso
Dec 9 '18 at 22:52




$begingroup$
it is a point-wise sequence of functions, that is $liminf (f_n+g)= (liminf f_n)+g$ means that $liminf (f_n(x)+g(x))= (liminf f_n(x))+g(x)$ for any chosen $xin E$
$endgroup$
– Masacroso
Dec 9 '18 at 22:52










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033113%2fshowing-lemmas-fatou-for-functions-not-necessarily-not-negative%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033113%2fshowing-lemmas-fatou-for-functions-not-necessarily-not-negative%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa