For $(z_n)$ complex, $limsuplimits_nn|z_n-1|$ finite iff $limsuplimits_nn|log(z_n)|$ finite
$begingroup$
Show that for $(z_n)_{ninmathbb N}$ in $mathbb C,$ $$limsuplimits_{n}n|z_n-1|<inftyifflimsuplimits_{n}|nlog(z_n)|<infty$$
And further that $$limlimits_{n}n(z_n-1)=limlimits_{n}nlog(z_n)$$ if one of the limits exists.
There is a hint that I should use the logarithmic series $sum_{n=1 } ^{infty } (-frac {1 } {k })^{k-1}(z-1)^k$ about the point $1 $. From which I can derive the inequality $|log(z)-(z-1)|le frac {1 } {2 } |z-1|^2 $for $|z-1|<1$. But here I get stuck.
sequences-and-series inequality complex-numbers
$endgroup$
add a comment |
$begingroup$
Show that for $(z_n)_{ninmathbb N}$ in $mathbb C,$ $$limsuplimits_{n}n|z_n-1|<inftyifflimsuplimits_{n}|nlog(z_n)|<infty$$
And further that $$limlimits_{n}n(z_n-1)=limlimits_{n}nlog(z_n)$$ if one of the limits exists.
There is a hint that I should use the logarithmic series $sum_{n=1 } ^{infty } (-frac {1 } {k })^{k-1}(z-1)^k$ about the point $1 $. From which I can derive the inequality $|log(z)-(z-1)|le frac {1 } {2 } |z-1|^2 $for $|z-1|<1$. But here I get stuck.
sequences-and-series inequality complex-numbers
$endgroup$
add a comment |
$begingroup$
Show that for $(z_n)_{ninmathbb N}$ in $mathbb C,$ $$limsuplimits_{n}n|z_n-1|<inftyifflimsuplimits_{n}|nlog(z_n)|<infty$$
And further that $$limlimits_{n}n(z_n-1)=limlimits_{n}nlog(z_n)$$ if one of the limits exists.
There is a hint that I should use the logarithmic series $sum_{n=1 } ^{infty } (-frac {1 } {k })^{k-1}(z-1)^k$ about the point $1 $. From which I can derive the inequality $|log(z)-(z-1)|le frac {1 } {2 } |z-1|^2 $for $|z-1|<1$. But here I get stuck.
sequences-and-series inequality complex-numbers
$endgroup$
Show that for $(z_n)_{ninmathbb N}$ in $mathbb C,$ $$limsuplimits_{n}n|z_n-1|<inftyifflimsuplimits_{n}|nlog(z_n)|<infty$$
And further that $$limlimits_{n}n(z_n-1)=limlimits_{n}nlog(z_n)$$ if one of the limits exists.
There is a hint that I should use the logarithmic series $sum_{n=1 } ^{infty } (-frac {1 } {k })^{k-1}(z-1)^k$ about the point $1 $. From which I can derive the inequality $|log(z)-(z-1)|le frac {1 } {2 } |z-1|^2 $for $|z-1|<1$. But here I get stuck.
sequences-and-series inequality complex-numbers
sequences-and-series inequality complex-numbers
edited Dec 17 '18 at 8:29
Did
248k23225463
248k23225463
asked Dec 17 '18 at 7:08
MrFranzénMrFranzén
49110
49110
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I will give an answer using a slightly modified form of the hint. Here log denotes the principal branch of logarithm. We have $log (z-1)=(z-1)-frac {(z-1)^{2}} 2+frac {(z-1)^{3}} 2cdots$. Hence $|log(z-1)-(z-1)| leq |z-1|^{2}+ |z-1|^{3}+cdots =frac {|z-1|^{2}} {1-|z-1|}$. Note that if any of the limits in the question exist then $z_n to 1$. Hence, for $n$ sufficiently large we have $|z_n-1|<frac 1 2$. This gives $|log(z-1)-(z-1)| < 2|z_n-1|^{2}$ for such $n$. From this it should be fairly easy to draw the desired conclusions. [If $lim sup n|z_n-1|< infty$ there $|z_n-1|leq C/n$ for some constant $C$so $n|z_n-1|^{2} leq n(frac C n)^{2} to 0$ and this gives $|nlog(z_n)| leq n|z_n-1|+2n|z_n-1|^{2}$, etc].
$endgroup$
$begingroup$
What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
$endgroup$
– MrFranzén
Dec 17 '18 at 11:01
$begingroup$
@MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 11:43
$begingroup$
Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
$endgroup$
– MrFranzén
Dec 17 '18 at 15:44
$begingroup$
@MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 23:10
add a comment |
$begingroup$
Hint. First of all
$$
limsup n|z_n-1|<infty quadLongleftrightarrowquad {n|z_n-1|},,,text{bounded sequence}
$$
and
$$
{n|z_n-1|},,,text{bounded} quadLongleftrightarrowquad |z_n-1|<frac{c}{n}, ,,,text{for some $c>0$}.
$$
Hence, $|z_n-1|<1/2$, for large enough $n$, i.e., $nge n_0$, which means that $logbig(1+(z_n-1)big)$ is expressible as a power seires
$$
log z_n=logbig(1+(z_n-1)big)=(z_n-1)-frac{(z_n-1)^2}{2}+frac{(z_n-1)^3}{3}+cdots
$$
and thus
$$
nlog z_n=n(z_n-1)-frac{n(z_n-1)^2}{2}+frac{n(z_n-1)^3}{3}+cdots
$$
and hence
$$
|nlog z_n-n(z_n-1)|lefrac{n|z_n-1|^2}{2}+frac{n|z_n-1|^3}{3}+cdots
\ =frac{(n|z_n-1|)^2}{2n}+frac{(n|z_n-1|)^3}{3n^2}+cdots \ le
frac{1}{2ncdot 2^2}+frac{1}{3n^2cdot 2^3}+cdots<frac{1}{n}left(frac{1}{2^2}+frac{1}{2^3}+cdotsright)=frac{1}{2n}
$$
$endgroup$
$begingroup$
The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
$endgroup$
– MrFranzén
Dec 17 '18 at 10:13
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043625%2ffor-z-n-complex-limsup-limits-nnz-n-1-finite-iff-limsup-limits-nn-l%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I will give an answer using a slightly modified form of the hint. Here log denotes the principal branch of logarithm. We have $log (z-1)=(z-1)-frac {(z-1)^{2}} 2+frac {(z-1)^{3}} 2cdots$. Hence $|log(z-1)-(z-1)| leq |z-1|^{2}+ |z-1|^{3}+cdots =frac {|z-1|^{2}} {1-|z-1|}$. Note that if any of the limits in the question exist then $z_n to 1$. Hence, for $n$ sufficiently large we have $|z_n-1|<frac 1 2$. This gives $|log(z-1)-(z-1)| < 2|z_n-1|^{2}$ for such $n$. From this it should be fairly easy to draw the desired conclusions. [If $lim sup n|z_n-1|< infty$ there $|z_n-1|leq C/n$ for some constant $C$so $n|z_n-1|^{2} leq n(frac C n)^{2} to 0$ and this gives $|nlog(z_n)| leq n|z_n-1|+2n|z_n-1|^{2}$, etc].
$endgroup$
$begingroup$
What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
$endgroup$
– MrFranzén
Dec 17 '18 at 11:01
$begingroup$
@MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 11:43
$begingroup$
Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
$endgroup$
– MrFranzén
Dec 17 '18 at 15:44
$begingroup$
@MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 23:10
add a comment |
$begingroup$
I will give an answer using a slightly modified form of the hint. Here log denotes the principal branch of logarithm. We have $log (z-1)=(z-1)-frac {(z-1)^{2}} 2+frac {(z-1)^{3}} 2cdots$. Hence $|log(z-1)-(z-1)| leq |z-1|^{2}+ |z-1|^{3}+cdots =frac {|z-1|^{2}} {1-|z-1|}$. Note that if any of the limits in the question exist then $z_n to 1$. Hence, for $n$ sufficiently large we have $|z_n-1|<frac 1 2$. This gives $|log(z-1)-(z-1)| < 2|z_n-1|^{2}$ for such $n$. From this it should be fairly easy to draw the desired conclusions. [If $lim sup n|z_n-1|< infty$ there $|z_n-1|leq C/n$ for some constant $C$so $n|z_n-1|^{2} leq n(frac C n)^{2} to 0$ and this gives $|nlog(z_n)| leq n|z_n-1|+2n|z_n-1|^{2}$, etc].
$endgroup$
$begingroup$
What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
$endgroup$
– MrFranzén
Dec 17 '18 at 11:01
$begingroup$
@MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 11:43
$begingroup$
Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
$endgroup$
– MrFranzén
Dec 17 '18 at 15:44
$begingroup$
@MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 23:10
add a comment |
$begingroup$
I will give an answer using a slightly modified form of the hint. Here log denotes the principal branch of logarithm. We have $log (z-1)=(z-1)-frac {(z-1)^{2}} 2+frac {(z-1)^{3}} 2cdots$. Hence $|log(z-1)-(z-1)| leq |z-1|^{2}+ |z-1|^{3}+cdots =frac {|z-1|^{2}} {1-|z-1|}$. Note that if any of the limits in the question exist then $z_n to 1$. Hence, for $n$ sufficiently large we have $|z_n-1|<frac 1 2$. This gives $|log(z-1)-(z-1)| < 2|z_n-1|^{2}$ for such $n$. From this it should be fairly easy to draw the desired conclusions. [If $lim sup n|z_n-1|< infty$ there $|z_n-1|leq C/n$ for some constant $C$so $n|z_n-1|^{2} leq n(frac C n)^{2} to 0$ and this gives $|nlog(z_n)| leq n|z_n-1|+2n|z_n-1|^{2}$, etc].
$endgroup$
I will give an answer using a slightly modified form of the hint. Here log denotes the principal branch of logarithm. We have $log (z-1)=(z-1)-frac {(z-1)^{2}} 2+frac {(z-1)^{3}} 2cdots$. Hence $|log(z-1)-(z-1)| leq |z-1|^{2}+ |z-1|^{3}+cdots =frac {|z-1|^{2}} {1-|z-1|}$. Note that if any of the limits in the question exist then $z_n to 1$. Hence, for $n$ sufficiently large we have $|z_n-1|<frac 1 2$. This gives $|log(z-1)-(z-1)| < 2|z_n-1|^{2}$ for such $n$. From this it should be fairly easy to draw the desired conclusions. [If $lim sup n|z_n-1|< infty$ there $|z_n-1|leq C/n$ for some constant $C$so $n|z_n-1|^{2} leq n(frac C n)^{2} to 0$ and this gives $|nlog(z_n)| leq n|z_n-1|+2n|z_n-1|^{2}$, etc].
edited Dec 17 '18 at 8:20
answered Dec 17 '18 at 8:11
Kavi Rama MurthyKavi Rama Murthy
67.8k53067
67.8k53067
$begingroup$
What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
$endgroup$
– MrFranzén
Dec 17 '18 at 11:01
$begingroup$
@MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 11:43
$begingroup$
Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
$endgroup$
– MrFranzén
Dec 17 '18 at 15:44
$begingroup$
@MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 23:10
add a comment |
$begingroup$
What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
$endgroup$
– MrFranzén
Dec 17 '18 at 11:01
$begingroup$
@MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 11:43
$begingroup$
Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
$endgroup$
– MrFranzén
Dec 17 '18 at 15:44
$begingroup$
@MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 23:10
$begingroup$
What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
$endgroup$
– MrFranzén
Dec 17 '18 at 11:01
$begingroup$
What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
$endgroup$
– MrFranzén
Dec 17 '18 at 11:01
$begingroup$
@MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 11:43
$begingroup$
@MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 11:43
$begingroup$
Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
$endgroup$
– MrFranzén
Dec 17 '18 at 15:44
$begingroup$
Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
$endgroup$
– MrFranzén
Dec 17 '18 at 15:44
$begingroup$
@MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 23:10
$begingroup$
@MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
$endgroup$
– Kavi Rama Murthy
Dec 17 '18 at 23:10
add a comment |
$begingroup$
Hint. First of all
$$
limsup n|z_n-1|<infty quadLongleftrightarrowquad {n|z_n-1|},,,text{bounded sequence}
$$
and
$$
{n|z_n-1|},,,text{bounded} quadLongleftrightarrowquad |z_n-1|<frac{c}{n}, ,,,text{for some $c>0$}.
$$
Hence, $|z_n-1|<1/2$, for large enough $n$, i.e., $nge n_0$, which means that $logbig(1+(z_n-1)big)$ is expressible as a power seires
$$
log z_n=logbig(1+(z_n-1)big)=(z_n-1)-frac{(z_n-1)^2}{2}+frac{(z_n-1)^3}{3}+cdots
$$
and thus
$$
nlog z_n=n(z_n-1)-frac{n(z_n-1)^2}{2}+frac{n(z_n-1)^3}{3}+cdots
$$
and hence
$$
|nlog z_n-n(z_n-1)|lefrac{n|z_n-1|^2}{2}+frac{n|z_n-1|^3}{3}+cdots
\ =frac{(n|z_n-1|)^2}{2n}+frac{(n|z_n-1|)^3}{3n^2}+cdots \ le
frac{1}{2ncdot 2^2}+frac{1}{3n^2cdot 2^3}+cdots<frac{1}{n}left(frac{1}{2^2}+frac{1}{2^3}+cdotsright)=frac{1}{2n}
$$
$endgroup$
$begingroup$
The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
$endgroup$
– MrFranzén
Dec 17 '18 at 10:13
add a comment |
$begingroup$
Hint. First of all
$$
limsup n|z_n-1|<infty quadLongleftrightarrowquad {n|z_n-1|},,,text{bounded sequence}
$$
and
$$
{n|z_n-1|},,,text{bounded} quadLongleftrightarrowquad |z_n-1|<frac{c}{n}, ,,,text{for some $c>0$}.
$$
Hence, $|z_n-1|<1/2$, for large enough $n$, i.e., $nge n_0$, which means that $logbig(1+(z_n-1)big)$ is expressible as a power seires
$$
log z_n=logbig(1+(z_n-1)big)=(z_n-1)-frac{(z_n-1)^2}{2}+frac{(z_n-1)^3}{3}+cdots
$$
and thus
$$
nlog z_n=n(z_n-1)-frac{n(z_n-1)^2}{2}+frac{n(z_n-1)^3}{3}+cdots
$$
and hence
$$
|nlog z_n-n(z_n-1)|lefrac{n|z_n-1|^2}{2}+frac{n|z_n-1|^3}{3}+cdots
\ =frac{(n|z_n-1|)^2}{2n}+frac{(n|z_n-1|)^3}{3n^2}+cdots \ le
frac{1}{2ncdot 2^2}+frac{1}{3n^2cdot 2^3}+cdots<frac{1}{n}left(frac{1}{2^2}+frac{1}{2^3}+cdotsright)=frac{1}{2n}
$$
$endgroup$
$begingroup$
The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
$endgroup$
– MrFranzén
Dec 17 '18 at 10:13
add a comment |
$begingroup$
Hint. First of all
$$
limsup n|z_n-1|<infty quadLongleftrightarrowquad {n|z_n-1|},,,text{bounded sequence}
$$
and
$$
{n|z_n-1|},,,text{bounded} quadLongleftrightarrowquad |z_n-1|<frac{c}{n}, ,,,text{for some $c>0$}.
$$
Hence, $|z_n-1|<1/2$, for large enough $n$, i.e., $nge n_0$, which means that $logbig(1+(z_n-1)big)$ is expressible as a power seires
$$
log z_n=logbig(1+(z_n-1)big)=(z_n-1)-frac{(z_n-1)^2}{2}+frac{(z_n-1)^3}{3}+cdots
$$
and thus
$$
nlog z_n=n(z_n-1)-frac{n(z_n-1)^2}{2}+frac{n(z_n-1)^3}{3}+cdots
$$
and hence
$$
|nlog z_n-n(z_n-1)|lefrac{n|z_n-1|^2}{2}+frac{n|z_n-1|^3}{3}+cdots
\ =frac{(n|z_n-1|)^2}{2n}+frac{(n|z_n-1|)^3}{3n^2}+cdots \ le
frac{1}{2ncdot 2^2}+frac{1}{3n^2cdot 2^3}+cdots<frac{1}{n}left(frac{1}{2^2}+frac{1}{2^3}+cdotsright)=frac{1}{2n}
$$
$endgroup$
Hint. First of all
$$
limsup n|z_n-1|<infty quadLongleftrightarrowquad {n|z_n-1|},,,text{bounded sequence}
$$
and
$$
{n|z_n-1|},,,text{bounded} quadLongleftrightarrowquad |z_n-1|<frac{c}{n}, ,,,text{for some $c>0$}.
$$
Hence, $|z_n-1|<1/2$, for large enough $n$, i.e., $nge n_0$, which means that $logbig(1+(z_n-1)big)$ is expressible as a power seires
$$
log z_n=logbig(1+(z_n-1)big)=(z_n-1)-frac{(z_n-1)^2}{2}+frac{(z_n-1)^3}{3}+cdots
$$
and thus
$$
nlog z_n=n(z_n-1)-frac{n(z_n-1)^2}{2}+frac{n(z_n-1)^3}{3}+cdots
$$
and hence
$$
|nlog z_n-n(z_n-1)|lefrac{n|z_n-1|^2}{2}+frac{n|z_n-1|^3}{3}+cdots
\ =frac{(n|z_n-1|)^2}{2n}+frac{(n|z_n-1|)^3}{3n^2}+cdots \ le
frac{1}{2ncdot 2^2}+frac{1}{3n^2cdot 2^3}+cdots<frac{1}{n}left(frac{1}{2^2}+frac{1}{2^3}+cdotsright)=frac{1}{2n}
$$
answered Dec 17 '18 at 8:49
Yiorgos S. SmyrlisYiorgos S. Smyrlis
63.5k1385164
63.5k1385164
$begingroup$
The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
$endgroup$
– MrFranzén
Dec 17 '18 at 10:13
add a comment |
$begingroup$
The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
$endgroup$
– MrFranzén
Dec 17 '18 at 10:13
$begingroup$
The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
$endgroup$
– MrFranzén
Dec 17 '18 at 10:13
$begingroup$
The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
$endgroup$
– MrFranzén
Dec 17 '18 at 10:13
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043625%2ffor-z-n-complex-limsup-limits-nnz-n-1-finite-iff-limsup-limits-nn-l%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown