If $bar X_nleq X_n$ for every $n$ then the associated counting processes are such that $bar N(t) geq N(t)$...
$begingroup$
${X_n, ngeq 1}$ is a renewal process. Let, there exists an $alpha>0$ such that $P(X_ngeq alpha)>0$. Now, define another related renewal process, ${bar X_n, ngeq 1}$ by,
begin{equation}
bar X_n=
begin{cases}
0, & text{if} X_n <alpha \
alpha, & text{otherwise}
end{cases}
end{equation}
For, $nge 1$, let $S_n = X_1+dots + X_n$ and $bar S_n = bar X_1+dots + bar X_n$. Also, let, $N(t) = max {nmid S_n leq t}$ and $bar N(t) = max {nmid bar S_n leq t}$
Show that, $bar N(t) geq N(t)$.
What I did: It is easy to see that $bar X_n leq X_n$, so $bar S_nleq S_n$. We also know that ${N(t)geq n}Leftrightarrow{S_nleq t}$.
probability-theory stochastic-processes
$endgroup$
add a comment |
$begingroup$
${X_n, ngeq 1}$ is a renewal process. Let, there exists an $alpha>0$ such that $P(X_ngeq alpha)>0$. Now, define another related renewal process, ${bar X_n, ngeq 1}$ by,
begin{equation}
bar X_n=
begin{cases}
0, & text{if} X_n <alpha \
alpha, & text{otherwise}
end{cases}
end{equation}
For, $nge 1$, let $S_n = X_1+dots + X_n$ and $bar S_n = bar X_1+dots + bar X_n$. Also, let, $N(t) = max {nmid S_n leq t}$ and $bar N(t) = max {nmid bar S_n leq t}$
Show that, $bar N(t) geq N(t)$.
What I did: It is easy to see that $bar X_n leq X_n$, so $bar S_nleq S_n$. We also know that ${N(t)geq n}Leftrightarrow{S_nleq t}$.
probability-theory stochastic-processes
$endgroup$
1
$begingroup$
Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
$endgroup$
– Did
Dec 17 '18 at 9:15
add a comment |
$begingroup$
${X_n, ngeq 1}$ is a renewal process. Let, there exists an $alpha>0$ such that $P(X_ngeq alpha)>0$. Now, define another related renewal process, ${bar X_n, ngeq 1}$ by,
begin{equation}
bar X_n=
begin{cases}
0, & text{if} X_n <alpha \
alpha, & text{otherwise}
end{cases}
end{equation}
For, $nge 1$, let $S_n = X_1+dots + X_n$ and $bar S_n = bar X_1+dots + bar X_n$. Also, let, $N(t) = max {nmid S_n leq t}$ and $bar N(t) = max {nmid bar S_n leq t}$
Show that, $bar N(t) geq N(t)$.
What I did: It is easy to see that $bar X_n leq X_n$, so $bar S_nleq S_n$. We also know that ${N(t)geq n}Leftrightarrow{S_nleq t}$.
probability-theory stochastic-processes
$endgroup$
${X_n, ngeq 1}$ is a renewal process. Let, there exists an $alpha>0$ such that $P(X_ngeq alpha)>0$. Now, define another related renewal process, ${bar X_n, ngeq 1}$ by,
begin{equation}
bar X_n=
begin{cases}
0, & text{if} X_n <alpha \
alpha, & text{otherwise}
end{cases}
end{equation}
For, $nge 1$, let $S_n = X_1+dots + X_n$ and $bar S_n = bar X_1+dots + bar X_n$. Also, let, $N(t) = max {nmid S_n leq t}$ and $bar N(t) = max {nmid bar S_n leq t}$
Show that, $bar N(t) geq N(t)$.
What I did: It is easy to see that $bar X_n leq X_n$, so $bar S_nleq S_n$. We also know that ${N(t)geq n}Leftrightarrow{S_nleq t}$.
probability-theory stochastic-processes
probability-theory stochastic-processes
edited Dec 17 '18 at 9:17
Did
248k23225463
248k23225463
asked Dec 17 '18 at 8:11
Stat_prob_001Stat_prob_001
321113
321113
1
$begingroup$
Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
$endgroup$
– Did
Dec 17 '18 at 9:15
add a comment |
1
$begingroup$
Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
$endgroup$
– Did
Dec 17 '18 at 9:15
1
1
$begingroup$
Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
$endgroup$
– Did
Dec 17 '18 at 9:15
$begingroup$
Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
$endgroup$
– Did
Dec 17 '18 at 9:15
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The braces ${$ and $}$ in your last statement should not be there. Then we get:$$N(t)geq niff S_nleq t$$as it should.
Combining this with $overline S_nleq S_n$ we find:$$N(t)geq nimplies overline S_nleq t$$or - on base of $overline N(t)geq niff overline S_nleq t$ - equivalently:$$N(t)geq nimplies overline N(t)geq ntag1$$
This for every $n$, so it implies that: $$overline N(t)geq N(t)tag2$$
Formally pick out an arbitrary $omegainOmega$ an let it be that $n=N(t)(omega)$. Then $N(t)(omega)geq n$ so according to $(1)$ we have $overline N(t)(omega)geq n=N(t)(omega)$. This proves that $overline N(t)(omega)geq N(t)(omega)$ for every $omegainOmega$ or shortly that $(2)$ is valid.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043673%2fif-bar-x-n-leq-x-n-for-every-n-then-the-associated-counting-processes-are-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The braces ${$ and $}$ in your last statement should not be there. Then we get:$$N(t)geq niff S_nleq t$$as it should.
Combining this with $overline S_nleq S_n$ we find:$$N(t)geq nimplies overline S_nleq t$$or - on base of $overline N(t)geq niff overline S_nleq t$ - equivalently:$$N(t)geq nimplies overline N(t)geq ntag1$$
This for every $n$, so it implies that: $$overline N(t)geq N(t)tag2$$
Formally pick out an arbitrary $omegainOmega$ an let it be that $n=N(t)(omega)$. Then $N(t)(omega)geq n$ so according to $(1)$ we have $overline N(t)(omega)geq n=N(t)(omega)$. This proves that $overline N(t)(omega)geq N(t)(omega)$ for every $omegainOmega$ or shortly that $(2)$ is valid.
$endgroup$
add a comment |
$begingroup$
The braces ${$ and $}$ in your last statement should not be there. Then we get:$$N(t)geq niff S_nleq t$$as it should.
Combining this with $overline S_nleq S_n$ we find:$$N(t)geq nimplies overline S_nleq t$$or - on base of $overline N(t)geq niff overline S_nleq t$ - equivalently:$$N(t)geq nimplies overline N(t)geq ntag1$$
This for every $n$, so it implies that: $$overline N(t)geq N(t)tag2$$
Formally pick out an arbitrary $omegainOmega$ an let it be that $n=N(t)(omega)$. Then $N(t)(omega)geq n$ so according to $(1)$ we have $overline N(t)(omega)geq n=N(t)(omega)$. This proves that $overline N(t)(omega)geq N(t)(omega)$ for every $omegainOmega$ or shortly that $(2)$ is valid.
$endgroup$
add a comment |
$begingroup$
The braces ${$ and $}$ in your last statement should not be there. Then we get:$$N(t)geq niff S_nleq t$$as it should.
Combining this with $overline S_nleq S_n$ we find:$$N(t)geq nimplies overline S_nleq t$$or - on base of $overline N(t)geq niff overline S_nleq t$ - equivalently:$$N(t)geq nimplies overline N(t)geq ntag1$$
This for every $n$, so it implies that: $$overline N(t)geq N(t)tag2$$
Formally pick out an arbitrary $omegainOmega$ an let it be that $n=N(t)(omega)$. Then $N(t)(omega)geq n$ so according to $(1)$ we have $overline N(t)(omega)geq n=N(t)(omega)$. This proves that $overline N(t)(omega)geq N(t)(omega)$ for every $omegainOmega$ or shortly that $(2)$ is valid.
$endgroup$
The braces ${$ and $}$ in your last statement should not be there. Then we get:$$N(t)geq niff S_nleq t$$as it should.
Combining this with $overline S_nleq S_n$ we find:$$N(t)geq nimplies overline S_nleq t$$or - on base of $overline N(t)geq niff overline S_nleq t$ - equivalently:$$N(t)geq nimplies overline N(t)geq ntag1$$
This for every $n$, so it implies that: $$overline N(t)geq N(t)tag2$$
Formally pick out an arbitrary $omegainOmega$ an let it be that $n=N(t)(omega)$. Then $N(t)(omega)geq n$ so according to $(1)$ we have $overline N(t)(omega)geq n=N(t)(omega)$. This proves that $overline N(t)(omega)geq N(t)(omega)$ for every $omegainOmega$ or shortly that $(2)$ is valid.
edited Dec 17 '18 at 10:40
answered Dec 17 '18 at 9:23
drhabdrhab
103k545136
103k545136
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043673%2fif-bar-x-n-leq-x-n-for-every-n-then-the-associated-counting-processes-are-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
$endgroup$
– Did
Dec 17 '18 at 9:15