Show inequality holds by induction
$begingroup$
Say I have $x_1 > y_1 > 0$ and $x_{n+1} = frac{x_n + y_n}{2}, y_{n+1} = frac{2x_ny_n}{x_n + y_n}$ for $n geq 1$. Show that $x_n > x_{n+1} > y_{n+1} > y_n > 0$.
So the obvious approach to me it seems is proceed by induction.
So with our base case, $n = 1$, $x_1 > frac{x_1 + y_1}{2} > frac{2x_1y_1}{x_1 + y_1} > y_1 > 0$.
Not sure if there's a good way to clean this up but not even sure how to show this holds true for the base case.
real-analysis sequences-and-series induction
$endgroup$
add a comment |
$begingroup$
Say I have $x_1 > y_1 > 0$ and $x_{n+1} = frac{x_n + y_n}{2}, y_{n+1} = frac{2x_ny_n}{x_n + y_n}$ for $n geq 1$. Show that $x_n > x_{n+1} > y_{n+1} > y_n > 0$.
So the obvious approach to me it seems is proceed by induction.
So with our base case, $n = 1$, $x_1 > frac{x_1 + y_1}{2} > frac{2x_1y_1}{x_1 + y_1} > y_1 > 0$.
Not sure if there's a good way to clean this up but not even sure how to show this holds true for the base case.
real-analysis sequences-and-series induction
$endgroup$
add a comment |
$begingroup$
Say I have $x_1 > y_1 > 0$ and $x_{n+1} = frac{x_n + y_n}{2}, y_{n+1} = frac{2x_ny_n}{x_n + y_n}$ for $n geq 1$. Show that $x_n > x_{n+1} > y_{n+1} > y_n > 0$.
So the obvious approach to me it seems is proceed by induction.
So with our base case, $n = 1$, $x_1 > frac{x_1 + y_1}{2} > frac{2x_1y_1}{x_1 + y_1} > y_1 > 0$.
Not sure if there's a good way to clean this up but not even sure how to show this holds true for the base case.
real-analysis sequences-and-series induction
$endgroup$
Say I have $x_1 > y_1 > 0$ and $x_{n+1} = frac{x_n + y_n}{2}, y_{n+1} = frac{2x_ny_n}{x_n + y_n}$ for $n geq 1$. Show that $x_n > x_{n+1} > y_{n+1} > y_n > 0$.
So the obvious approach to me it seems is proceed by induction.
So with our base case, $n = 1$, $x_1 > frac{x_1 + y_1}{2} > frac{2x_1y_1}{x_1 + y_1} > y_1 > 0$.
Not sure if there's a good way to clean this up but not even sure how to show this holds true for the base case.
real-analysis sequences-and-series induction
real-analysis sequences-and-series induction
asked Sep 28 '18 at 1:09
SS'SS'
597314
597314
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Your inductive hypothesis is $x_n > y_n$ then there are $3$ things to show firstly
begin{eqnarray*}
x_n = frac{x_n+x_n}{2} > frac{x_n+y_n}{2} > x_{n+1}.
end{eqnarray*}
Secondly AM-HM which follows from $(x_n-y_n)^2>0$
begin{eqnarray*}
frac{x_n+y_n}{2} > frac{2x_n y_n}{x_n+y_n}.
end{eqnarray*}
Thirdly we have $x_n y_n > y_n^2$ now add $x_n y_n$ to both sides and divide by $x_n+y_n$ and we have
begin{eqnarray*}
y_{n+1}= frac{2x_n y_n}{x_n+y_n}> y_n.
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
We don’t need induction indeed we have that
$$x_n > x_{n+1}iff x_n =frac{x_n + x_n}{2}>frac{x_n + y_n}{2}$$
$$x_{n+1} >y_{n+1}iff frac{x_n + y_n}{2}> frac{2x_ny_n}{x_n + y_n}iff (x_n-y_n)^2>0$$
$$Y_{n+1} >y_{n}iff frac{2x_ny_n}{x_n + y_n}>y_niff frac{x_n+x_n}{x_n + y_n}>1$$
$endgroup$
add a comment |
$begingroup$
Notice that for all $n$ we have $x_n,y_n>0$. Therefore if $$x_n>y_n>0$$ we have $$(x_n-y_n)^2>0\(x_n+y_n)^2>4x_ny_n\{x_n+y_nover 2}>{2x_ny_nover x_n+y_n}\x_{n+1}>y_{n+1}$$since $x_1>y_1>0$ we have $x_n>y_n>0$ for all $n$. Also $$x_{n+1}={x_n+y_nover 2}<{x_n+x_nover 2}=x_n\y_{n+1}={2x_ny_nover x_n+y_n}$$since ${2auover a+u}$ is an increasing function of $u$ for $a>0$ and $uge a$, the minimum is attained when $u=a$. Therefore $$y_{n+1}={2x_ny_nover x_n+y_n}>{2y_ny_nover y_n+y_n}=y_n$$from which we finally conclude that$$x_{n}>x_{n+1}>y_{n+1}>y_{n}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2933825%2fshow-inequality-holds-by-induction%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your inductive hypothesis is $x_n > y_n$ then there are $3$ things to show firstly
begin{eqnarray*}
x_n = frac{x_n+x_n}{2} > frac{x_n+y_n}{2} > x_{n+1}.
end{eqnarray*}
Secondly AM-HM which follows from $(x_n-y_n)^2>0$
begin{eqnarray*}
frac{x_n+y_n}{2} > frac{2x_n y_n}{x_n+y_n}.
end{eqnarray*}
Thirdly we have $x_n y_n > y_n^2$ now add $x_n y_n$ to both sides and divide by $x_n+y_n$ and we have
begin{eqnarray*}
y_{n+1}= frac{2x_n y_n}{x_n+y_n}> y_n.
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Your inductive hypothesis is $x_n > y_n$ then there are $3$ things to show firstly
begin{eqnarray*}
x_n = frac{x_n+x_n}{2} > frac{x_n+y_n}{2} > x_{n+1}.
end{eqnarray*}
Secondly AM-HM which follows from $(x_n-y_n)^2>0$
begin{eqnarray*}
frac{x_n+y_n}{2} > frac{2x_n y_n}{x_n+y_n}.
end{eqnarray*}
Thirdly we have $x_n y_n > y_n^2$ now add $x_n y_n$ to both sides and divide by $x_n+y_n$ and we have
begin{eqnarray*}
y_{n+1}= frac{2x_n y_n}{x_n+y_n}> y_n.
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Your inductive hypothesis is $x_n > y_n$ then there are $3$ things to show firstly
begin{eqnarray*}
x_n = frac{x_n+x_n}{2} > frac{x_n+y_n}{2} > x_{n+1}.
end{eqnarray*}
Secondly AM-HM which follows from $(x_n-y_n)^2>0$
begin{eqnarray*}
frac{x_n+y_n}{2} > frac{2x_n y_n}{x_n+y_n}.
end{eqnarray*}
Thirdly we have $x_n y_n > y_n^2$ now add $x_n y_n$ to both sides and divide by $x_n+y_n$ and we have
begin{eqnarray*}
y_{n+1}= frac{2x_n y_n}{x_n+y_n}> y_n.
end{eqnarray*}
$endgroup$
Your inductive hypothesis is $x_n > y_n$ then there are $3$ things to show firstly
begin{eqnarray*}
x_n = frac{x_n+x_n}{2} > frac{x_n+y_n}{2} > x_{n+1}.
end{eqnarray*}
Secondly AM-HM which follows from $(x_n-y_n)^2>0$
begin{eqnarray*}
frac{x_n+y_n}{2} > frac{2x_n y_n}{x_n+y_n}.
end{eqnarray*}
Thirdly we have $x_n y_n > y_n^2$ now add $x_n y_n$ to both sides and divide by $x_n+y_n$ and we have
begin{eqnarray*}
y_{n+1}= frac{2x_n y_n}{x_n+y_n}> y_n.
end{eqnarray*}
answered Sep 28 '18 at 1:25
Donald SplutterwitDonald Splutterwit
22.6k21446
22.6k21446
add a comment |
add a comment |
$begingroup$
We don’t need induction indeed we have that
$$x_n > x_{n+1}iff x_n =frac{x_n + x_n}{2}>frac{x_n + y_n}{2}$$
$$x_{n+1} >y_{n+1}iff frac{x_n + y_n}{2}> frac{2x_ny_n}{x_n + y_n}iff (x_n-y_n)^2>0$$
$$Y_{n+1} >y_{n}iff frac{2x_ny_n}{x_n + y_n}>y_niff frac{x_n+x_n}{x_n + y_n}>1$$
$endgroup$
add a comment |
$begingroup$
We don’t need induction indeed we have that
$$x_n > x_{n+1}iff x_n =frac{x_n + x_n}{2}>frac{x_n + y_n}{2}$$
$$x_{n+1} >y_{n+1}iff frac{x_n + y_n}{2}> frac{2x_ny_n}{x_n + y_n}iff (x_n-y_n)^2>0$$
$$Y_{n+1} >y_{n}iff frac{2x_ny_n}{x_n + y_n}>y_niff frac{x_n+x_n}{x_n + y_n}>1$$
$endgroup$
add a comment |
$begingroup$
We don’t need induction indeed we have that
$$x_n > x_{n+1}iff x_n =frac{x_n + x_n}{2}>frac{x_n + y_n}{2}$$
$$x_{n+1} >y_{n+1}iff frac{x_n + y_n}{2}> frac{2x_ny_n}{x_n + y_n}iff (x_n-y_n)^2>0$$
$$Y_{n+1} >y_{n}iff frac{2x_ny_n}{x_n + y_n}>y_niff frac{x_n+x_n}{x_n + y_n}>1$$
$endgroup$
We don’t need induction indeed we have that
$$x_n > x_{n+1}iff x_n =frac{x_n + x_n}{2}>frac{x_n + y_n}{2}$$
$$x_{n+1} >y_{n+1}iff frac{x_n + y_n}{2}> frac{2x_ny_n}{x_n + y_n}iff (x_n-y_n)^2>0$$
$$Y_{n+1} >y_{n}iff frac{2x_ny_n}{x_n + y_n}>y_niff frac{x_n+x_n}{x_n + y_n}>1$$
answered Sep 28 '18 at 1:24
gimusigimusi
92.9k94494
92.9k94494
add a comment |
add a comment |
$begingroup$
Notice that for all $n$ we have $x_n,y_n>0$. Therefore if $$x_n>y_n>0$$ we have $$(x_n-y_n)^2>0\(x_n+y_n)^2>4x_ny_n\{x_n+y_nover 2}>{2x_ny_nover x_n+y_n}\x_{n+1}>y_{n+1}$$since $x_1>y_1>0$ we have $x_n>y_n>0$ for all $n$. Also $$x_{n+1}={x_n+y_nover 2}<{x_n+x_nover 2}=x_n\y_{n+1}={2x_ny_nover x_n+y_n}$$since ${2auover a+u}$ is an increasing function of $u$ for $a>0$ and $uge a$, the minimum is attained when $u=a$. Therefore $$y_{n+1}={2x_ny_nover x_n+y_n}>{2y_ny_nover y_n+y_n}=y_n$$from which we finally conclude that$$x_{n}>x_{n+1}>y_{n+1}>y_{n}$$
$endgroup$
add a comment |
$begingroup$
Notice that for all $n$ we have $x_n,y_n>0$. Therefore if $$x_n>y_n>0$$ we have $$(x_n-y_n)^2>0\(x_n+y_n)^2>4x_ny_n\{x_n+y_nover 2}>{2x_ny_nover x_n+y_n}\x_{n+1}>y_{n+1}$$since $x_1>y_1>0$ we have $x_n>y_n>0$ for all $n$. Also $$x_{n+1}={x_n+y_nover 2}<{x_n+x_nover 2}=x_n\y_{n+1}={2x_ny_nover x_n+y_n}$$since ${2auover a+u}$ is an increasing function of $u$ for $a>0$ and $uge a$, the minimum is attained when $u=a$. Therefore $$y_{n+1}={2x_ny_nover x_n+y_n}>{2y_ny_nover y_n+y_n}=y_n$$from which we finally conclude that$$x_{n}>x_{n+1}>y_{n+1}>y_{n}$$
$endgroup$
add a comment |
$begingroup$
Notice that for all $n$ we have $x_n,y_n>0$. Therefore if $$x_n>y_n>0$$ we have $$(x_n-y_n)^2>0\(x_n+y_n)^2>4x_ny_n\{x_n+y_nover 2}>{2x_ny_nover x_n+y_n}\x_{n+1}>y_{n+1}$$since $x_1>y_1>0$ we have $x_n>y_n>0$ for all $n$. Also $$x_{n+1}={x_n+y_nover 2}<{x_n+x_nover 2}=x_n\y_{n+1}={2x_ny_nover x_n+y_n}$$since ${2auover a+u}$ is an increasing function of $u$ for $a>0$ and $uge a$, the minimum is attained when $u=a$. Therefore $$y_{n+1}={2x_ny_nover x_n+y_n}>{2y_ny_nover y_n+y_n}=y_n$$from which we finally conclude that$$x_{n}>x_{n+1}>y_{n+1}>y_{n}$$
$endgroup$
Notice that for all $n$ we have $x_n,y_n>0$. Therefore if $$x_n>y_n>0$$ we have $$(x_n-y_n)^2>0\(x_n+y_n)^2>4x_ny_n\{x_n+y_nover 2}>{2x_ny_nover x_n+y_n}\x_{n+1}>y_{n+1}$$since $x_1>y_1>0$ we have $x_n>y_n>0$ for all $n$. Also $$x_{n+1}={x_n+y_nover 2}<{x_n+x_nover 2}=x_n\y_{n+1}={2x_ny_nover x_n+y_n}$$since ${2auover a+u}$ is an increasing function of $u$ for $a>0$ and $uge a$, the minimum is attained when $u=a$. Therefore $$y_{n+1}={2x_ny_nover x_n+y_n}>{2y_ny_nover y_n+y_n}=y_n$$from which we finally conclude that$$x_{n}>x_{n+1}>y_{n+1}>y_{n}$$
answered Dec 1 '18 at 9:00
Mostafa AyazMostafa Ayaz
15.4k3939
15.4k3939
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2933825%2fshow-inequality-holds-by-induction%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown