How to solve expectation of continuous variables












0












$begingroup$


If it is assumed that $xthicksim N(0,sigma^2)$, then it can be shown that $E{exp(x)}=exp(0.5sigma^2)$



How to show that?










share|cite|improve this question









$endgroup$












  • $begingroup$
    If $X$ has a normal distribution then $exp(X)$ has a log-normal distribution
    $endgroup$
    – Henry
    Nov 29 '18 at 22:11










  • $begingroup$
    what's the meaning of log-normal distribution?
    $endgroup$
    – Yao Zhao
    Nov 29 '18 at 22:12










  • $begingroup$
    en.wikipedia.org/wiki/Log-normal_distribution
    $endgroup$
    – Henry
    Nov 29 '18 at 22:12
















0












$begingroup$


If it is assumed that $xthicksim N(0,sigma^2)$, then it can be shown that $E{exp(x)}=exp(0.5sigma^2)$



How to show that?










share|cite|improve this question









$endgroup$












  • $begingroup$
    If $X$ has a normal distribution then $exp(X)$ has a log-normal distribution
    $endgroup$
    – Henry
    Nov 29 '18 at 22:11










  • $begingroup$
    what's the meaning of log-normal distribution?
    $endgroup$
    – Yao Zhao
    Nov 29 '18 at 22:12










  • $begingroup$
    en.wikipedia.org/wiki/Log-normal_distribution
    $endgroup$
    – Henry
    Nov 29 '18 at 22:12














0












0








0





$begingroup$


If it is assumed that $xthicksim N(0,sigma^2)$, then it can be shown that $E{exp(x)}=exp(0.5sigma^2)$



How to show that?










share|cite|improve this question









$endgroup$




If it is assumed that $xthicksim N(0,sigma^2)$, then it can be shown that $E{exp(x)}=exp(0.5sigma^2)$



How to show that?







probability






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 29 '18 at 22:06









Yao ZhaoYao Zhao

215




215












  • $begingroup$
    If $X$ has a normal distribution then $exp(X)$ has a log-normal distribution
    $endgroup$
    – Henry
    Nov 29 '18 at 22:11










  • $begingroup$
    what's the meaning of log-normal distribution?
    $endgroup$
    – Yao Zhao
    Nov 29 '18 at 22:12










  • $begingroup$
    en.wikipedia.org/wiki/Log-normal_distribution
    $endgroup$
    – Henry
    Nov 29 '18 at 22:12


















  • $begingroup$
    If $X$ has a normal distribution then $exp(X)$ has a log-normal distribution
    $endgroup$
    – Henry
    Nov 29 '18 at 22:11










  • $begingroup$
    what's the meaning of log-normal distribution?
    $endgroup$
    – Yao Zhao
    Nov 29 '18 at 22:12










  • $begingroup$
    en.wikipedia.org/wiki/Log-normal_distribution
    $endgroup$
    – Henry
    Nov 29 '18 at 22:12
















$begingroup$
If $X$ has a normal distribution then $exp(X)$ has a log-normal distribution
$endgroup$
– Henry
Nov 29 '18 at 22:11




$begingroup$
If $X$ has a normal distribution then $exp(X)$ has a log-normal distribution
$endgroup$
– Henry
Nov 29 '18 at 22:11












$begingroup$
what's the meaning of log-normal distribution?
$endgroup$
– Yao Zhao
Nov 29 '18 at 22:12




$begingroup$
what's the meaning of log-normal distribution?
$endgroup$
– Yao Zhao
Nov 29 '18 at 22:12












$begingroup$
en.wikipedia.org/wiki/Log-normal_distribution
$endgroup$
– Henry
Nov 29 '18 at 22:12




$begingroup$
en.wikipedia.org/wiki/Log-normal_distribution
$endgroup$
– Henry
Nov 29 '18 at 22:12










1 Answer
1






active

oldest

votes


















0












$begingroup$

$Eexp tX$ is called the moment-generating function or mgf of $X$. We can prove $Eexp tX=exp sigma^2t^2/2$ for this distribution. The expectation is this integral (note the substitution $y=x-sigma^2 t$): $$int_{Bbb R}frac{1}{sigmasqrt{2pi}}expbigg(tx-frac{x^2}{2sigma^2}bigg)dx=int_{Bbb R}frac{1}{sigmasqrt{2pi}}expbigg(frac{sigma^4t^2-y^2}{2sigma^2}bigg)dy=exp sigma^2 t^2/2.$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019298%2fhow-to-solve-expectation-of-continuous-variables%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $Eexp tX$ is called the moment-generating function or mgf of $X$. We can prove $Eexp tX=exp sigma^2t^2/2$ for this distribution. The expectation is this integral (note the substitution $y=x-sigma^2 t$): $$int_{Bbb R}frac{1}{sigmasqrt{2pi}}expbigg(tx-frac{x^2}{2sigma^2}bigg)dx=int_{Bbb R}frac{1}{sigmasqrt{2pi}}expbigg(frac{sigma^4t^2-y^2}{2sigma^2}bigg)dy=exp sigma^2 t^2/2.$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $Eexp tX$ is called the moment-generating function or mgf of $X$. We can prove $Eexp tX=exp sigma^2t^2/2$ for this distribution. The expectation is this integral (note the substitution $y=x-sigma^2 t$): $$int_{Bbb R}frac{1}{sigmasqrt{2pi}}expbigg(tx-frac{x^2}{2sigma^2}bigg)dx=int_{Bbb R}frac{1}{sigmasqrt{2pi}}expbigg(frac{sigma^4t^2-y^2}{2sigma^2}bigg)dy=exp sigma^2 t^2/2.$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $Eexp tX$ is called the moment-generating function or mgf of $X$. We can prove $Eexp tX=exp sigma^2t^2/2$ for this distribution. The expectation is this integral (note the substitution $y=x-sigma^2 t$): $$int_{Bbb R}frac{1}{sigmasqrt{2pi}}expbigg(tx-frac{x^2}{2sigma^2}bigg)dx=int_{Bbb R}frac{1}{sigmasqrt{2pi}}expbigg(frac{sigma^4t^2-y^2}{2sigma^2}bigg)dy=exp sigma^2 t^2/2.$$






        share|cite|improve this answer









        $endgroup$



        $Eexp tX$ is called the moment-generating function or mgf of $X$. We can prove $Eexp tX=exp sigma^2t^2/2$ for this distribution. The expectation is this integral (note the substitution $y=x-sigma^2 t$): $$int_{Bbb R}frac{1}{sigmasqrt{2pi}}expbigg(tx-frac{x^2}{2sigma^2}bigg)dx=int_{Bbb R}frac{1}{sigmasqrt{2pi}}expbigg(frac{sigma^4t^2-y^2}{2sigma^2}bigg)dy=exp sigma^2 t^2/2.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 29 '18 at 22:22









        J.G.J.G.

        24.1k22539




        24.1k22539






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019298%2fhow-to-solve-expectation-of-continuous-variables%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa