Simplify $int_a^b mathrm{d}x_1 …mathrm{d}x_m int_c^d mathrm{d}y_1 …mathrm{d}y_n prod_{i=1}^m prod_{j=1}^n...
$begingroup$
Let $a le b$ and $cle d$ be real numbers and $f$ a real function. I am struggling with an integral of the form:
$$I =
int_a^b mathrm{d}x_1 ...mathrm{d}x_m
int_c^d mathrm{d}y_1 ...mathrm{d}y_n
prod_{i=1}^m prod_{j=1}^n f(x_i y_j)$$
Can it be reduced to a single or double integration somehow?
I am interested in the large $m,n$ behavior of $I$. Specifically, suppose that the ratio $alpha = m/n$ is fixed. Can we evaluate in general the limit:
$$lim_{nrightarrowinfty} frac{1}{n} ln I$$
So far, these are the only reductions I've been able to do:
$$begin{aligned}
I & = int_a^b mathrm d x_1 dots mathrm d x_m left( int_c^d mathrm d y
prod_{i = 1}^m f (x_i y) right)^n\
& = int_c^d mathrm d y_1 ldots mathrm d y_m left( int_a^b mathrm d x
prod_{j = 1}^n f (x y_j) right)^m
end{aligned}$$
integration definite-integrals multiple-integral large-deviation-theory
$endgroup$
add a comment |
$begingroup$
Let $a le b$ and $cle d$ be real numbers and $f$ a real function. I am struggling with an integral of the form:
$$I =
int_a^b mathrm{d}x_1 ...mathrm{d}x_m
int_c^d mathrm{d}y_1 ...mathrm{d}y_n
prod_{i=1}^m prod_{j=1}^n f(x_i y_j)$$
Can it be reduced to a single or double integration somehow?
I am interested in the large $m,n$ behavior of $I$. Specifically, suppose that the ratio $alpha = m/n$ is fixed. Can we evaluate in general the limit:
$$lim_{nrightarrowinfty} frac{1}{n} ln I$$
So far, these are the only reductions I've been able to do:
$$begin{aligned}
I & = int_a^b mathrm d x_1 dots mathrm d x_m left( int_c^d mathrm d y
prod_{i = 1}^m f (x_i y) right)^n\
& = int_c^d mathrm d y_1 ldots mathrm d y_m left( int_a^b mathrm d x
prod_{j = 1}^n f (x y_j) right)^m
end{aligned}$$
integration definite-integrals multiple-integral large-deviation-theory
$endgroup$
$begingroup$
Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
Nov 30 '18 at 23:24
$begingroup$
@SangchulLee Lovely. Can this be generalized somehow?
$endgroup$
– becko
Dec 3 '18 at 16:32
add a comment |
$begingroup$
Let $a le b$ and $cle d$ be real numbers and $f$ a real function. I am struggling with an integral of the form:
$$I =
int_a^b mathrm{d}x_1 ...mathrm{d}x_m
int_c^d mathrm{d}y_1 ...mathrm{d}y_n
prod_{i=1}^m prod_{j=1}^n f(x_i y_j)$$
Can it be reduced to a single or double integration somehow?
I am interested in the large $m,n$ behavior of $I$. Specifically, suppose that the ratio $alpha = m/n$ is fixed. Can we evaluate in general the limit:
$$lim_{nrightarrowinfty} frac{1}{n} ln I$$
So far, these are the only reductions I've been able to do:
$$begin{aligned}
I & = int_a^b mathrm d x_1 dots mathrm d x_m left( int_c^d mathrm d y
prod_{i = 1}^m f (x_i y) right)^n\
& = int_c^d mathrm d y_1 ldots mathrm d y_m left( int_a^b mathrm d x
prod_{j = 1}^n f (x y_j) right)^m
end{aligned}$$
integration definite-integrals multiple-integral large-deviation-theory
$endgroup$
Let $a le b$ and $cle d$ be real numbers and $f$ a real function. I am struggling with an integral of the form:
$$I =
int_a^b mathrm{d}x_1 ...mathrm{d}x_m
int_c^d mathrm{d}y_1 ...mathrm{d}y_n
prod_{i=1}^m prod_{j=1}^n f(x_i y_j)$$
Can it be reduced to a single or double integration somehow?
I am interested in the large $m,n$ behavior of $I$. Specifically, suppose that the ratio $alpha = m/n$ is fixed. Can we evaluate in general the limit:
$$lim_{nrightarrowinfty} frac{1}{n} ln I$$
So far, these are the only reductions I've been able to do:
$$begin{aligned}
I & = int_a^b mathrm d x_1 dots mathrm d x_m left( int_c^d mathrm d y
prod_{i = 1}^m f (x_i y) right)^n\
& = int_c^d mathrm d y_1 ldots mathrm d y_m left( int_a^b mathrm d x
prod_{j = 1}^n f (x y_j) right)^m
end{aligned}$$
integration definite-integrals multiple-integral large-deviation-theory
integration definite-integrals multiple-integral large-deviation-theory
edited Nov 30 '18 at 22:26
becko
asked Nov 29 '18 at 17:48
beckobecko
2,34931942
2,34931942
$begingroup$
Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
Nov 30 '18 at 23:24
$begingroup$
@SangchulLee Lovely. Can this be generalized somehow?
$endgroup$
– becko
Dec 3 '18 at 16:32
add a comment |
$begingroup$
Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
Nov 30 '18 at 23:24
$begingroup$
@SangchulLee Lovely. Can this be generalized somehow?
$endgroup$
– becko
Dec 3 '18 at 16:32
$begingroup$
Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
Nov 30 '18 at 23:24
$begingroup$
Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
Nov 30 '18 at 23:24
$begingroup$
@SangchulLee Lovely. Can this be generalized somehow?
$endgroup$
– becko
Dec 3 '18 at 16:32
$begingroup$
@SangchulLee Lovely. Can this be generalized somehow?
$endgroup$
– becko
Dec 3 '18 at 16:32
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018942%2fsimplify-int-ab-mathrmdx-1-mathrmdx-m-int-cd-mathrmdy-1-mat%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018942%2fsimplify-int-ab-mathrmdx-1-mathrmdx-m-int-cd-mathrmdy-1-mat%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
Nov 30 '18 at 23:24
$begingroup$
@SangchulLee Lovely. Can this be generalized somehow?
$endgroup$
– becko
Dec 3 '18 at 16:32