Simplify $int_a^b mathrm{d}x_1 …mathrm{d}x_m int_c^d mathrm{d}y_1 …mathrm{d}y_n prod_{i=1}^m prod_{j=1}^n...












3












$begingroup$


Let $a le b$ and $cle d$ be real numbers and $f$ a real function. I am struggling with an integral of the form:



$$I =
int_a^b mathrm{d}x_1 ...mathrm{d}x_m
int_c^d mathrm{d}y_1 ...mathrm{d}y_n
prod_{i=1}^m prod_{j=1}^n f(x_i y_j)$$



Can it be reduced to a single or double integration somehow?



I am interested in the large $m,n$ behavior of $I$. Specifically, suppose that the ratio $alpha = m/n$ is fixed. Can we evaluate in general the limit:



$$lim_{nrightarrowinfty} frac{1}{n} ln I$$



So far, these are the only reductions I've been able to do:



$$begin{aligned}
I & = int_a^b mathrm d x_1 dots mathrm d x_m left( int_c^d mathrm d y
prod_{i = 1}^m f (x_i y) right)^n\
& = int_c^d mathrm d y_1 ldots mathrm d y_m left( int_a^b mathrm d x
prod_{j = 1}^n f (x y_j) right)^m
end{aligned}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
    $endgroup$
    – Sangchul Lee
    Nov 30 '18 at 23:24












  • $begingroup$
    @SangchulLee Lovely. Can this be generalized somehow?
    $endgroup$
    – becko
    Dec 3 '18 at 16:32
















3












$begingroup$


Let $a le b$ and $cle d$ be real numbers and $f$ a real function. I am struggling with an integral of the form:



$$I =
int_a^b mathrm{d}x_1 ...mathrm{d}x_m
int_c^d mathrm{d}y_1 ...mathrm{d}y_n
prod_{i=1}^m prod_{j=1}^n f(x_i y_j)$$



Can it be reduced to a single or double integration somehow?



I am interested in the large $m,n$ behavior of $I$. Specifically, suppose that the ratio $alpha = m/n$ is fixed. Can we evaluate in general the limit:



$$lim_{nrightarrowinfty} frac{1}{n} ln I$$



So far, these are the only reductions I've been able to do:



$$begin{aligned}
I & = int_a^b mathrm d x_1 dots mathrm d x_m left( int_c^d mathrm d y
prod_{i = 1}^m f (x_i y) right)^n\
& = int_c^d mathrm d y_1 ldots mathrm d y_m left( int_a^b mathrm d x
prod_{j = 1}^n f (x y_j) right)^m
end{aligned}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
    $endgroup$
    – Sangchul Lee
    Nov 30 '18 at 23:24












  • $begingroup$
    @SangchulLee Lovely. Can this be generalized somehow?
    $endgroup$
    – becko
    Dec 3 '18 at 16:32














3












3








3


1



$begingroup$


Let $a le b$ and $cle d$ be real numbers and $f$ a real function. I am struggling with an integral of the form:



$$I =
int_a^b mathrm{d}x_1 ...mathrm{d}x_m
int_c^d mathrm{d}y_1 ...mathrm{d}y_n
prod_{i=1}^m prod_{j=1}^n f(x_i y_j)$$



Can it be reduced to a single or double integration somehow?



I am interested in the large $m,n$ behavior of $I$. Specifically, suppose that the ratio $alpha = m/n$ is fixed. Can we evaluate in general the limit:



$$lim_{nrightarrowinfty} frac{1}{n} ln I$$



So far, these are the only reductions I've been able to do:



$$begin{aligned}
I & = int_a^b mathrm d x_1 dots mathrm d x_m left( int_c^d mathrm d y
prod_{i = 1}^m f (x_i y) right)^n\
& = int_c^d mathrm d y_1 ldots mathrm d y_m left( int_a^b mathrm d x
prod_{j = 1}^n f (x y_j) right)^m
end{aligned}$$










share|cite|improve this question











$endgroup$




Let $a le b$ and $cle d$ be real numbers and $f$ a real function. I am struggling with an integral of the form:



$$I =
int_a^b mathrm{d}x_1 ...mathrm{d}x_m
int_c^d mathrm{d}y_1 ...mathrm{d}y_n
prod_{i=1}^m prod_{j=1}^n f(x_i y_j)$$



Can it be reduced to a single or double integration somehow?



I am interested in the large $m,n$ behavior of $I$. Specifically, suppose that the ratio $alpha = m/n$ is fixed. Can we evaluate in general the limit:



$$lim_{nrightarrowinfty} frac{1}{n} ln I$$



So far, these are the only reductions I've been able to do:



$$begin{aligned}
I & = int_a^b mathrm d x_1 dots mathrm d x_m left( int_c^d mathrm d y
prod_{i = 1}^m f (x_i y) right)^n\
& = int_c^d mathrm d y_1 ldots mathrm d y_m left( int_a^b mathrm d x
prod_{j = 1}^n f (x y_j) right)^m
end{aligned}$$







integration definite-integrals multiple-integral large-deviation-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 30 '18 at 22:26







becko

















asked Nov 29 '18 at 17:48









beckobecko

2,34931942




2,34931942












  • $begingroup$
    Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
    $endgroup$
    – Sangchul Lee
    Nov 30 '18 at 23:24












  • $begingroup$
    @SangchulLee Lovely. Can this be generalized somehow?
    $endgroup$
    – becko
    Dec 3 '18 at 16:32


















  • $begingroup$
    Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
    $endgroup$
    – Sangchul Lee
    Nov 30 '18 at 23:24












  • $begingroup$
    @SangchulLee Lovely. Can this be generalized somehow?
    $endgroup$
    – becko
    Dec 3 '18 at 16:32
















$begingroup$
Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
Nov 30 '18 at 23:24






$begingroup$
Even in the simplest case $[a,b]=[c,d]=[0,1]$ with $f(x)=x^p$ $(p>0)$, we have $$I=int_{[0,1]^m}dmathrm{x}int_{[0,1]^n}dmathrm{y},left(x_1^n cdots x_m^n y_1^m cdots y_n^m right)=frac{1}{(pn+1)^m(pm+1)^n}.$$ In this case, along $m/n sim alpha in (0, 1)$, we have $log I sim -(alpha + 1)nlog n$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
Nov 30 '18 at 23:24














$begingroup$
@SangchulLee Lovely. Can this be generalized somehow?
$endgroup$
– becko
Dec 3 '18 at 16:32




$begingroup$
@SangchulLee Lovely. Can this be generalized somehow?
$endgroup$
– becko
Dec 3 '18 at 16:32










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018942%2fsimplify-int-ab-mathrmdx-1-mathrmdx-m-int-cd-mathrmdy-1-mat%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018942%2fsimplify-int-ab-mathrmdx-1-mathrmdx-m-int-cd-mathrmdy-1-mat%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa