If $f(x)$ is continuous on $[a,b]$ and $M=max ; |f(x)|$, is $M=lim limits_{ntoinfty}...
$begingroup$
Let $f(x)$ be a continuous real-valued function on $[a,b]$ and $M=max{|f(x)| ; :; x in [a,b]}$. Is it true that:
$$
M= lim_{ntoinfty}left(int_a^b|f(x)|^n,mathrm dxright)^{1/n} ?
$$
Thanks!
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $f(x)$ be a continuous real-valued function on $[a,b]$ and $M=max{|f(x)| ; :; x in [a,b]}$. Is it true that:
$$
M= lim_{ntoinfty}left(int_a^b|f(x)|^n,mathrm dxright)^{1/n} ?
$$
Thanks!
real-analysis
$endgroup$
3
$begingroup$
Did you forget $limlimits_{ntoinfty}$ somewhere?
$endgroup$
– Ilya
Dec 4 '11 at 17:46
6
$begingroup$
In other words, you are asking if $| f |_n to | f |_infty$ for a continuous $f$.
$endgroup$
– Srivatsan
Dec 4 '11 at 19:09
add a comment |
$begingroup$
Let $f(x)$ be a continuous real-valued function on $[a,b]$ and $M=max{|f(x)| ; :; x in [a,b]}$. Is it true that:
$$
M= lim_{ntoinfty}left(int_a^b|f(x)|^n,mathrm dxright)^{1/n} ?
$$
Thanks!
real-analysis
$endgroup$
Let $f(x)$ be a continuous real-valued function on $[a,b]$ and $M=max{|f(x)| ; :; x in [a,b]}$. Is it true that:
$$
M= lim_{ntoinfty}left(int_a^b|f(x)|^n,mathrm dxright)^{1/n} ?
$$
Thanks!
real-analysis
real-analysis
edited Dec 4 '11 at 19:04
Srivatsan
20.9k371125
20.9k371125
asked Dec 4 '11 at 17:45
tomergtomerg
738820
738820
3
$begingroup$
Did you forget $limlimits_{ntoinfty}$ somewhere?
$endgroup$
– Ilya
Dec 4 '11 at 17:46
6
$begingroup$
In other words, you are asking if $| f |_n to | f |_infty$ for a continuous $f$.
$endgroup$
– Srivatsan
Dec 4 '11 at 19:09
add a comment |
3
$begingroup$
Did you forget $limlimits_{ntoinfty}$ somewhere?
$endgroup$
– Ilya
Dec 4 '11 at 17:46
6
$begingroup$
In other words, you are asking if $| f |_n to | f |_infty$ for a continuous $f$.
$endgroup$
– Srivatsan
Dec 4 '11 at 19:09
3
3
$begingroup$
Did you forget $limlimits_{ntoinfty}$ somewhere?
$endgroup$
– Ilya
Dec 4 '11 at 17:46
$begingroup$
Did you forget $limlimits_{ntoinfty}$ somewhere?
$endgroup$
– Ilya
Dec 4 '11 at 17:46
6
6
$begingroup$
In other words, you are asking if $| f |_n to | f |_infty$ for a continuous $f$.
$endgroup$
– Srivatsan
Dec 4 '11 at 19:09
$begingroup$
In other words, you are asking if $| f |_n to | f |_infty$ for a continuous $f$.
$endgroup$
– Srivatsan
Dec 4 '11 at 19:09
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Put $S_{delta}:={xinleft[a,bright], |f(x)|geq M-delta}$ for any $delta>0$. Then we have for all $n$
$$Mcdot (b-a)^{frac 1n}geqleft(int_a^b|f(x)|^ndxright)^{frac 1n}geq left(int_{S_{delta}}|f(x)|^ndxright)^{frac 1n}geq (M-delta)left(lambda(S_{delta})right)^{frac 1n}.$$
Since $f$ is continuous, the measure of $S_{delta}$ is positive and taking the $liminf$ and $limsup$, we can see that
$$Mgeq limsup_n left(int_a^b|f(x)|^ndxright)^{frac 1n}geq M-deltaquad mbox{and }quad Mgeq liminf_nleft(int_a^b|f(x)|^ndxright)^{frac 1n}geq M-delta$$
for all $delta>0$, so $lim_{ntoinfty}left(int_a^b|f(x)|^ndxright)^{frac 1n}=M$.
$endgroup$
$begingroup$
Why do you absolutely need to take the lim inf and lim sup? All the limits exists.
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 10:42
3
$begingroup$
@PatrickDaSilva We don't know a priori that the limit $lim_nleft(int_a^b|f(x)|^nright)^{frac 1n}$ exists.
$endgroup$
– Davide Giraudo
Jan 5 '12 at 12:36
$begingroup$
Hm. I thought it was a sandwich argument at first, but I noticed the difference. Thanks for pointing it out
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 23:13
add a comment |
$begingroup$
It can be seen as a particular case of Laplace's principle. For simplicity assume that $f(x) ge 0$.
$$lim_{nrightarrowinfty} log frac{1}{n} int_a^b exp(n log f(x))mathrm d x = max_{xin[a,b]} log f(x)$$
Taking $exp$ of both sides gives the result.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f88300%2fif-fx-is-continuous-on-a-b-and-m-max-fx-is-m-lim-limits-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Put $S_{delta}:={xinleft[a,bright], |f(x)|geq M-delta}$ for any $delta>0$. Then we have for all $n$
$$Mcdot (b-a)^{frac 1n}geqleft(int_a^b|f(x)|^ndxright)^{frac 1n}geq left(int_{S_{delta}}|f(x)|^ndxright)^{frac 1n}geq (M-delta)left(lambda(S_{delta})right)^{frac 1n}.$$
Since $f$ is continuous, the measure of $S_{delta}$ is positive and taking the $liminf$ and $limsup$, we can see that
$$Mgeq limsup_n left(int_a^b|f(x)|^ndxright)^{frac 1n}geq M-deltaquad mbox{and }quad Mgeq liminf_nleft(int_a^b|f(x)|^ndxright)^{frac 1n}geq M-delta$$
for all $delta>0$, so $lim_{ntoinfty}left(int_a^b|f(x)|^ndxright)^{frac 1n}=M$.
$endgroup$
$begingroup$
Why do you absolutely need to take the lim inf and lim sup? All the limits exists.
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 10:42
3
$begingroup$
@PatrickDaSilva We don't know a priori that the limit $lim_nleft(int_a^b|f(x)|^nright)^{frac 1n}$ exists.
$endgroup$
– Davide Giraudo
Jan 5 '12 at 12:36
$begingroup$
Hm. I thought it was a sandwich argument at first, but I noticed the difference. Thanks for pointing it out
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 23:13
add a comment |
$begingroup$
Put $S_{delta}:={xinleft[a,bright], |f(x)|geq M-delta}$ for any $delta>0$. Then we have for all $n$
$$Mcdot (b-a)^{frac 1n}geqleft(int_a^b|f(x)|^ndxright)^{frac 1n}geq left(int_{S_{delta}}|f(x)|^ndxright)^{frac 1n}geq (M-delta)left(lambda(S_{delta})right)^{frac 1n}.$$
Since $f$ is continuous, the measure of $S_{delta}$ is positive and taking the $liminf$ and $limsup$, we can see that
$$Mgeq limsup_n left(int_a^b|f(x)|^ndxright)^{frac 1n}geq M-deltaquad mbox{and }quad Mgeq liminf_nleft(int_a^b|f(x)|^ndxright)^{frac 1n}geq M-delta$$
for all $delta>0$, so $lim_{ntoinfty}left(int_a^b|f(x)|^ndxright)^{frac 1n}=M$.
$endgroup$
$begingroup$
Why do you absolutely need to take the lim inf and lim sup? All the limits exists.
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 10:42
3
$begingroup$
@PatrickDaSilva We don't know a priori that the limit $lim_nleft(int_a^b|f(x)|^nright)^{frac 1n}$ exists.
$endgroup$
– Davide Giraudo
Jan 5 '12 at 12:36
$begingroup$
Hm. I thought it was a sandwich argument at first, but I noticed the difference. Thanks for pointing it out
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 23:13
add a comment |
$begingroup$
Put $S_{delta}:={xinleft[a,bright], |f(x)|geq M-delta}$ for any $delta>0$. Then we have for all $n$
$$Mcdot (b-a)^{frac 1n}geqleft(int_a^b|f(x)|^ndxright)^{frac 1n}geq left(int_{S_{delta}}|f(x)|^ndxright)^{frac 1n}geq (M-delta)left(lambda(S_{delta})right)^{frac 1n}.$$
Since $f$ is continuous, the measure of $S_{delta}$ is positive and taking the $liminf$ and $limsup$, we can see that
$$Mgeq limsup_n left(int_a^b|f(x)|^ndxright)^{frac 1n}geq M-deltaquad mbox{and }quad Mgeq liminf_nleft(int_a^b|f(x)|^ndxright)^{frac 1n}geq M-delta$$
for all $delta>0$, so $lim_{ntoinfty}left(int_a^b|f(x)|^ndxright)^{frac 1n}=M$.
$endgroup$
Put $S_{delta}:={xinleft[a,bright], |f(x)|geq M-delta}$ for any $delta>0$. Then we have for all $n$
$$Mcdot (b-a)^{frac 1n}geqleft(int_a^b|f(x)|^ndxright)^{frac 1n}geq left(int_{S_{delta}}|f(x)|^ndxright)^{frac 1n}geq (M-delta)left(lambda(S_{delta})right)^{frac 1n}.$$
Since $f$ is continuous, the measure of $S_{delta}$ is positive and taking the $liminf$ and $limsup$, we can see that
$$Mgeq limsup_n left(int_a^b|f(x)|^ndxright)^{frac 1n}geq M-deltaquad mbox{and }quad Mgeq liminf_nleft(int_a^b|f(x)|^ndxright)^{frac 1n}geq M-delta$$
for all $delta>0$, so $lim_{ntoinfty}left(int_a^b|f(x)|^ndxright)^{frac 1n}=M$.
edited Dec 5 '11 at 15:27
answered Dec 4 '11 at 18:06
Davide GiraudoDavide Giraudo
125k16150261
125k16150261
$begingroup$
Why do you absolutely need to take the lim inf and lim sup? All the limits exists.
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 10:42
3
$begingroup$
@PatrickDaSilva We don't know a priori that the limit $lim_nleft(int_a^b|f(x)|^nright)^{frac 1n}$ exists.
$endgroup$
– Davide Giraudo
Jan 5 '12 at 12:36
$begingroup$
Hm. I thought it was a sandwich argument at first, but I noticed the difference. Thanks for pointing it out
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 23:13
add a comment |
$begingroup$
Why do you absolutely need to take the lim inf and lim sup? All the limits exists.
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 10:42
3
$begingroup$
@PatrickDaSilva We don't know a priori that the limit $lim_nleft(int_a^b|f(x)|^nright)^{frac 1n}$ exists.
$endgroup$
– Davide Giraudo
Jan 5 '12 at 12:36
$begingroup$
Hm. I thought it was a sandwich argument at first, but I noticed the difference. Thanks for pointing it out
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 23:13
$begingroup$
Why do you absolutely need to take the lim inf and lim sup? All the limits exists.
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 10:42
$begingroup$
Why do you absolutely need to take the lim inf and lim sup? All the limits exists.
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 10:42
3
3
$begingroup$
@PatrickDaSilva We don't know a priori that the limit $lim_nleft(int_a^b|f(x)|^nright)^{frac 1n}$ exists.
$endgroup$
– Davide Giraudo
Jan 5 '12 at 12:36
$begingroup$
@PatrickDaSilva We don't know a priori that the limit $lim_nleft(int_a^b|f(x)|^nright)^{frac 1n}$ exists.
$endgroup$
– Davide Giraudo
Jan 5 '12 at 12:36
$begingroup$
Hm. I thought it was a sandwich argument at first, but I noticed the difference. Thanks for pointing it out
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 23:13
$begingroup$
Hm. I thought it was a sandwich argument at first, but I noticed the difference. Thanks for pointing it out
$endgroup$
– Patrick Da Silva
Jan 5 '12 at 23:13
add a comment |
$begingroup$
It can be seen as a particular case of Laplace's principle. For simplicity assume that $f(x) ge 0$.
$$lim_{nrightarrowinfty} log frac{1}{n} int_a^b exp(n log f(x))mathrm d x = max_{xin[a,b]} log f(x)$$
Taking $exp$ of both sides gives the result.
$endgroup$
add a comment |
$begingroup$
It can be seen as a particular case of Laplace's principle. For simplicity assume that $f(x) ge 0$.
$$lim_{nrightarrowinfty} log frac{1}{n} int_a^b exp(n log f(x))mathrm d x = max_{xin[a,b]} log f(x)$$
Taking $exp$ of both sides gives the result.
$endgroup$
add a comment |
$begingroup$
It can be seen as a particular case of Laplace's principle. For simplicity assume that $f(x) ge 0$.
$$lim_{nrightarrowinfty} log frac{1}{n} int_a^b exp(n log f(x))mathrm d x = max_{xin[a,b]} log f(x)$$
Taking $exp$ of both sides gives the result.
$endgroup$
It can be seen as a particular case of Laplace's principle. For simplicity assume that $f(x) ge 0$.
$$lim_{nrightarrowinfty} log frac{1}{n} int_a^b exp(n log f(x))mathrm d x = max_{xin[a,b]} log f(x)$$
Taking $exp$ of both sides gives the result.
answered Nov 29 '18 at 21:38
beckobecko
2,34931942
2,34931942
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f88300%2fif-fx-is-continuous-on-a-b-and-m-max-fx-is-m-lim-limits-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Did you forget $limlimits_{ntoinfty}$ somewhere?
$endgroup$
– Ilya
Dec 4 '11 at 17:46
6
$begingroup$
In other words, you are asking if $| f |_n to | f |_infty$ for a continuous $f$.
$endgroup$
– Srivatsan
Dec 4 '11 at 19:09