If $f'$ is bounded on $mathbb{R}$, then is $f$ uniformly continuous?
$begingroup$
Say $f : mathbb{R} to mathbb{R}$ is differentiable.
Show if $f'$ is bounded, then $f$ is uniformly continuous.
Try
For any $[a, b] subset mathbb{R}$$(a<b)$, I can show $f$ is uniformly continuous, as follows.
Say $x_0 in [a,b]$ is given. Fix $epsilon >0$.
Since $exists M >0$ s.t. $|f'(x)| le M$, we show $|y - x_0| < epsilon/M Rightarrow |f(y) - f(x_0)| < epsilon$.
Assume $exists y_0 in [a,b]$ s.t. $|y_0 - x_0| < epsilon/M$ and $|f(y_0) - f(x_0)| ge epsilon$.
Since $frac{f(y_0) - f(x_0)}{y_0 - x_0} > epsilon times M/epsilon = M$, by MVT $exists c in left[min{x_0, y_0} max{x_0, y_0}right]$ s.t. $f'(c) = frac{f(y_0) - f(x_0)}{y_0 - x_0}$. Observe $|f'(c)| > M$, which is a contradiction to $|f'(x)| le M$.
But I'm not sure I can generalize this fact on $[a,b]$ to $mathbb{R}$.
real-analysis
$endgroup$
add a comment |
$begingroup$
Say $f : mathbb{R} to mathbb{R}$ is differentiable.
Show if $f'$ is bounded, then $f$ is uniformly continuous.
Try
For any $[a, b] subset mathbb{R}$$(a<b)$, I can show $f$ is uniformly continuous, as follows.
Say $x_0 in [a,b]$ is given. Fix $epsilon >0$.
Since $exists M >0$ s.t. $|f'(x)| le M$, we show $|y - x_0| < epsilon/M Rightarrow |f(y) - f(x_0)| < epsilon$.
Assume $exists y_0 in [a,b]$ s.t. $|y_0 - x_0| < epsilon/M$ and $|f(y_0) - f(x_0)| ge epsilon$.
Since $frac{f(y_0) - f(x_0)}{y_0 - x_0} > epsilon times M/epsilon = M$, by MVT $exists c in left[min{x_0, y_0} max{x_0, y_0}right]$ s.t. $f'(c) = frac{f(y_0) - f(x_0)}{y_0 - x_0}$. Observe $|f'(c)| > M$, which is a contradiction to $|f'(x)| le M$.
But I'm not sure I can generalize this fact on $[a,b]$ to $mathbb{R}$.
real-analysis
$endgroup$
$begingroup$
Moreblue.f' bounded implies f Lipschitz continuous implies f uniformly continuous.en.m.wikipedia.org/wiki/Lipschitz_continuity
$endgroup$
– Peter Szilas
Nov 29 '18 at 21:49
add a comment |
$begingroup$
Say $f : mathbb{R} to mathbb{R}$ is differentiable.
Show if $f'$ is bounded, then $f$ is uniformly continuous.
Try
For any $[a, b] subset mathbb{R}$$(a<b)$, I can show $f$ is uniformly continuous, as follows.
Say $x_0 in [a,b]$ is given. Fix $epsilon >0$.
Since $exists M >0$ s.t. $|f'(x)| le M$, we show $|y - x_0| < epsilon/M Rightarrow |f(y) - f(x_0)| < epsilon$.
Assume $exists y_0 in [a,b]$ s.t. $|y_0 - x_0| < epsilon/M$ and $|f(y_0) - f(x_0)| ge epsilon$.
Since $frac{f(y_0) - f(x_0)}{y_0 - x_0} > epsilon times M/epsilon = M$, by MVT $exists c in left[min{x_0, y_0} max{x_0, y_0}right]$ s.t. $f'(c) = frac{f(y_0) - f(x_0)}{y_0 - x_0}$. Observe $|f'(c)| > M$, which is a contradiction to $|f'(x)| le M$.
But I'm not sure I can generalize this fact on $[a,b]$ to $mathbb{R}$.
real-analysis
$endgroup$
Say $f : mathbb{R} to mathbb{R}$ is differentiable.
Show if $f'$ is bounded, then $f$ is uniformly continuous.
Try
For any $[a, b] subset mathbb{R}$$(a<b)$, I can show $f$ is uniformly continuous, as follows.
Say $x_0 in [a,b]$ is given. Fix $epsilon >0$.
Since $exists M >0$ s.t. $|f'(x)| le M$, we show $|y - x_0| < epsilon/M Rightarrow |f(y) - f(x_0)| < epsilon$.
Assume $exists y_0 in [a,b]$ s.t. $|y_0 - x_0| < epsilon/M$ and $|f(y_0) - f(x_0)| ge epsilon$.
Since $frac{f(y_0) - f(x_0)}{y_0 - x_0} > epsilon times M/epsilon = M$, by MVT $exists c in left[min{x_0, y_0} max{x_0, y_0}right]$ s.t. $f'(c) = frac{f(y_0) - f(x_0)}{y_0 - x_0}$. Observe $|f'(c)| > M$, which is a contradiction to $|f'(x)| le M$.
But I'm not sure I can generalize this fact on $[a,b]$ to $mathbb{R}$.
real-analysis
real-analysis
asked Nov 29 '18 at 21:17
MoreblueMoreblue
8741216
8741216
$begingroup$
Moreblue.f' bounded implies f Lipschitz continuous implies f uniformly continuous.en.m.wikipedia.org/wiki/Lipschitz_continuity
$endgroup$
– Peter Szilas
Nov 29 '18 at 21:49
add a comment |
$begingroup$
Moreblue.f' bounded implies f Lipschitz continuous implies f uniformly continuous.en.m.wikipedia.org/wiki/Lipschitz_continuity
$endgroup$
– Peter Szilas
Nov 29 '18 at 21:49
$begingroup$
Moreblue.f' bounded implies f Lipschitz continuous implies f uniformly continuous.en.m.wikipedia.org/wiki/Lipschitz_continuity
$endgroup$
– Peter Szilas
Nov 29 '18 at 21:49
$begingroup$
Moreblue.f' bounded implies f Lipschitz continuous implies f uniformly continuous.en.m.wikipedia.org/wiki/Lipschitz_continuity
$endgroup$
– Peter Szilas
Nov 29 '18 at 21:49
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
hint
$f$ is differentiable at $Bbb R$ thus by MVT, for all $x,y$, there exists $c$ in $Bbb R$ such that
$$f(x)-f(y)=(x-y)f'(c)$$
but $f'$ is bounded, so
there exist $K> 0$ :
$$|f(x)-f(y)|le K|x-y|.$$
you can take $eta=frac{epsilon}{K}$.
$endgroup$
add a comment |
$begingroup$
I don't think there is any trouble to generalize.
If $x,y in mathbb R$ the mean-value theorem gives you a point $z$ in between $x$ and $y$ satisfying $$f(x) - f(y) = f'(z)(x-y)$$ so that
$$|f(x) - f(y)| = |f'(z)| |x-y| le M |x-y|.$$
This holds for all $x$ and $y$.
Thus if $epsilon > 0$ and $|x-y| < epsilon /M$, then $|f(x) - f(y)| < epsilon$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019234%2fif-f-is-bounded-on-mathbbr-then-is-f-uniformly-continuous%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
hint
$f$ is differentiable at $Bbb R$ thus by MVT, for all $x,y$, there exists $c$ in $Bbb R$ such that
$$f(x)-f(y)=(x-y)f'(c)$$
but $f'$ is bounded, so
there exist $K> 0$ :
$$|f(x)-f(y)|le K|x-y|.$$
you can take $eta=frac{epsilon}{K}$.
$endgroup$
add a comment |
$begingroup$
hint
$f$ is differentiable at $Bbb R$ thus by MVT, for all $x,y$, there exists $c$ in $Bbb R$ such that
$$f(x)-f(y)=(x-y)f'(c)$$
but $f'$ is bounded, so
there exist $K> 0$ :
$$|f(x)-f(y)|le K|x-y|.$$
you can take $eta=frac{epsilon}{K}$.
$endgroup$
add a comment |
$begingroup$
hint
$f$ is differentiable at $Bbb R$ thus by MVT, for all $x,y$, there exists $c$ in $Bbb R$ such that
$$f(x)-f(y)=(x-y)f'(c)$$
but $f'$ is bounded, so
there exist $K> 0$ :
$$|f(x)-f(y)|le K|x-y|.$$
you can take $eta=frac{epsilon}{K}$.
$endgroup$
hint
$f$ is differentiable at $Bbb R$ thus by MVT, for all $x,y$, there exists $c$ in $Bbb R$ such that
$$f(x)-f(y)=(x-y)f'(c)$$
but $f'$ is bounded, so
there exist $K> 0$ :
$$|f(x)-f(y)|le K|x-y|.$$
you can take $eta=frac{epsilon}{K}$.
answered Nov 29 '18 at 21:24
hamam_Abdallahhamam_Abdallah
38k21634
38k21634
add a comment |
add a comment |
$begingroup$
I don't think there is any trouble to generalize.
If $x,y in mathbb R$ the mean-value theorem gives you a point $z$ in between $x$ and $y$ satisfying $$f(x) - f(y) = f'(z)(x-y)$$ so that
$$|f(x) - f(y)| = |f'(z)| |x-y| le M |x-y|.$$
This holds for all $x$ and $y$.
Thus if $epsilon > 0$ and $|x-y| < epsilon /M$, then $|f(x) - f(y)| < epsilon$.
$endgroup$
add a comment |
$begingroup$
I don't think there is any trouble to generalize.
If $x,y in mathbb R$ the mean-value theorem gives you a point $z$ in between $x$ and $y$ satisfying $$f(x) - f(y) = f'(z)(x-y)$$ so that
$$|f(x) - f(y)| = |f'(z)| |x-y| le M |x-y|.$$
This holds for all $x$ and $y$.
Thus if $epsilon > 0$ and $|x-y| < epsilon /M$, then $|f(x) - f(y)| < epsilon$.
$endgroup$
add a comment |
$begingroup$
I don't think there is any trouble to generalize.
If $x,y in mathbb R$ the mean-value theorem gives you a point $z$ in between $x$ and $y$ satisfying $$f(x) - f(y) = f'(z)(x-y)$$ so that
$$|f(x) - f(y)| = |f'(z)| |x-y| le M |x-y|.$$
This holds for all $x$ and $y$.
Thus if $epsilon > 0$ and $|x-y| < epsilon /M$, then $|f(x) - f(y)| < epsilon$.
$endgroup$
I don't think there is any trouble to generalize.
If $x,y in mathbb R$ the mean-value theorem gives you a point $z$ in between $x$ and $y$ satisfying $$f(x) - f(y) = f'(z)(x-y)$$ so that
$$|f(x) - f(y)| = |f'(z)| |x-y| le M |x-y|.$$
This holds for all $x$ and $y$.
Thus if $epsilon > 0$ and $|x-y| < epsilon /M$, then $|f(x) - f(y)| < epsilon$.
answered Nov 29 '18 at 21:22
Umberto P.Umberto P.
38.8k13064
38.8k13064
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019234%2fif-f-is-bounded-on-mathbbr-then-is-f-uniformly-continuous%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Moreblue.f' bounded implies f Lipschitz continuous implies f uniformly continuous.en.m.wikipedia.org/wiki/Lipschitz_continuity
$endgroup$
– Peter Szilas
Nov 29 '18 at 21:49