Does the value of the $lim_{x to 0-} x^x = 1$?












2












$begingroup$


I have the following attempt.



Let $x=-y$ then ${y to 0+}$ as ${x to 0-}$.



So, $displaystylelim_{x to 0-} {x}^{x}$= $displaystylelim_{y to 0+} {(-y)}^{(-y)} = displaystylelim_{y to 0+} dfrac{1}{{(-y)}^{y}}= displaystylelim_{y to 0+} dfrac{1}{{(-1)}^{y}.{y}^{y}}=displaystylelim_{y to 0+} dfrac{1}{{y}^{y}}$



Now as, $displaystylelim_{y to 0+} y^y =displaystylelim_{y to 0+} {e}^{yln{y}}
= {e}^{displaystylelim_{y to 0+} yln{y}}={e}^{displaystylelim_{y to 0+} frac{ln{y}}{frac{1}{y}}} = {e}^{displaystylelim_{y to 0+} frac{frac{1}{y}}{{-frac{1}{y^2}}}}
= {e}^{displaystylelim_{y to 0+} {-y}}=e^{0}=1$



Hence $displaystylelim_{y to 0+} dfrac{1}{{y}^{y}}=dfrac{1}{1}=1$



So, $displaystylelim_{x to 0-} {x}^{x}=1$



Is it correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For the term $$x^x$$ must be $$x>0$$ in the other case we get a complex number.
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 24 '18 at 15:32






  • 1




    $begingroup$
    How did you write $left( -1 right)^y = 1$? Don't you think if we take a sequence $dfrac{1}{n}$, $left( -1 right)^{frac{1}{n}}$ may not be defined in $mathbb{R}$?
    $endgroup$
    – Aniruddha Deshmukh
    Dec 24 '18 at 15:32






  • 2




    $begingroup$
    It depends on your definition of $a^b$ for $a<0$, but using $a^b=e^{b(ln(-a)+pi i)}$ your argument should work.
    $endgroup$
    – SmileyCraft
    Dec 24 '18 at 15:33








  • 1




    $begingroup$
    $x^y$ is not defined if$x<0$ and$y$ is not an integer.
    $endgroup$
    – Bernard
    Dec 24 '18 at 15:40










  • $begingroup$
    Are you trying to typeset limits from above/below? Just want to be sure before I edit with corrected LaTeX.
    $endgroup$
    – The Pointer
    Dec 24 '18 at 15:57


















2












$begingroup$


I have the following attempt.



Let $x=-y$ then ${y to 0+}$ as ${x to 0-}$.



So, $displaystylelim_{x to 0-} {x}^{x}$= $displaystylelim_{y to 0+} {(-y)}^{(-y)} = displaystylelim_{y to 0+} dfrac{1}{{(-y)}^{y}}= displaystylelim_{y to 0+} dfrac{1}{{(-1)}^{y}.{y}^{y}}=displaystylelim_{y to 0+} dfrac{1}{{y}^{y}}$



Now as, $displaystylelim_{y to 0+} y^y =displaystylelim_{y to 0+} {e}^{yln{y}}
= {e}^{displaystylelim_{y to 0+} yln{y}}={e}^{displaystylelim_{y to 0+} frac{ln{y}}{frac{1}{y}}} = {e}^{displaystylelim_{y to 0+} frac{frac{1}{y}}{{-frac{1}{y^2}}}}
= {e}^{displaystylelim_{y to 0+} {-y}}=e^{0}=1$



Hence $displaystylelim_{y to 0+} dfrac{1}{{y}^{y}}=dfrac{1}{1}=1$



So, $displaystylelim_{x to 0-} {x}^{x}=1$



Is it correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For the term $$x^x$$ must be $$x>0$$ in the other case we get a complex number.
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 24 '18 at 15:32






  • 1




    $begingroup$
    How did you write $left( -1 right)^y = 1$? Don't you think if we take a sequence $dfrac{1}{n}$, $left( -1 right)^{frac{1}{n}}$ may not be defined in $mathbb{R}$?
    $endgroup$
    – Aniruddha Deshmukh
    Dec 24 '18 at 15:32






  • 2




    $begingroup$
    It depends on your definition of $a^b$ for $a<0$, but using $a^b=e^{b(ln(-a)+pi i)}$ your argument should work.
    $endgroup$
    – SmileyCraft
    Dec 24 '18 at 15:33








  • 1




    $begingroup$
    $x^y$ is not defined if$x<0$ and$y$ is not an integer.
    $endgroup$
    – Bernard
    Dec 24 '18 at 15:40










  • $begingroup$
    Are you trying to typeset limits from above/below? Just want to be sure before I edit with corrected LaTeX.
    $endgroup$
    – The Pointer
    Dec 24 '18 at 15:57
















2












2








2





$begingroup$


I have the following attempt.



Let $x=-y$ then ${y to 0+}$ as ${x to 0-}$.



So, $displaystylelim_{x to 0-} {x}^{x}$= $displaystylelim_{y to 0+} {(-y)}^{(-y)} = displaystylelim_{y to 0+} dfrac{1}{{(-y)}^{y}}= displaystylelim_{y to 0+} dfrac{1}{{(-1)}^{y}.{y}^{y}}=displaystylelim_{y to 0+} dfrac{1}{{y}^{y}}$



Now as, $displaystylelim_{y to 0+} y^y =displaystylelim_{y to 0+} {e}^{yln{y}}
= {e}^{displaystylelim_{y to 0+} yln{y}}={e}^{displaystylelim_{y to 0+} frac{ln{y}}{frac{1}{y}}} = {e}^{displaystylelim_{y to 0+} frac{frac{1}{y}}{{-frac{1}{y^2}}}}
= {e}^{displaystylelim_{y to 0+} {-y}}=e^{0}=1$



Hence $displaystylelim_{y to 0+} dfrac{1}{{y}^{y}}=dfrac{1}{1}=1$



So, $displaystylelim_{x to 0-} {x}^{x}=1$



Is it correct?










share|cite|improve this question











$endgroup$




I have the following attempt.



Let $x=-y$ then ${y to 0+}$ as ${x to 0-}$.



So, $displaystylelim_{x to 0-} {x}^{x}$= $displaystylelim_{y to 0+} {(-y)}^{(-y)} = displaystylelim_{y to 0+} dfrac{1}{{(-y)}^{y}}= displaystylelim_{y to 0+} dfrac{1}{{(-1)}^{y}.{y}^{y}}=displaystylelim_{y to 0+} dfrac{1}{{y}^{y}}$



Now as, $displaystylelim_{y to 0+} y^y =displaystylelim_{y to 0+} {e}^{yln{y}}
= {e}^{displaystylelim_{y to 0+} yln{y}}={e}^{displaystylelim_{y to 0+} frac{ln{y}}{frac{1}{y}}} = {e}^{displaystylelim_{y to 0+} frac{frac{1}{y}}{{-frac{1}{y^2}}}}
= {e}^{displaystylelim_{y to 0+} {-y}}=e^{0}=1$



Hence $displaystylelim_{y to 0+} dfrac{1}{{y}^{y}}=dfrac{1}{1}=1$



So, $displaystylelim_{x to 0-} {x}^{x}=1$



Is it correct?







complex-analysis limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 24 '18 at 15:45







Kousik Sett

















asked Dec 24 '18 at 15:30









Kousik SettKousik Sett

1026




1026












  • $begingroup$
    For the term $$x^x$$ must be $$x>0$$ in the other case we get a complex number.
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 24 '18 at 15:32






  • 1




    $begingroup$
    How did you write $left( -1 right)^y = 1$? Don't you think if we take a sequence $dfrac{1}{n}$, $left( -1 right)^{frac{1}{n}}$ may not be defined in $mathbb{R}$?
    $endgroup$
    – Aniruddha Deshmukh
    Dec 24 '18 at 15:32






  • 2




    $begingroup$
    It depends on your definition of $a^b$ for $a<0$, but using $a^b=e^{b(ln(-a)+pi i)}$ your argument should work.
    $endgroup$
    – SmileyCraft
    Dec 24 '18 at 15:33








  • 1




    $begingroup$
    $x^y$ is not defined if$x<0$ and$y$ is not an integer.
    $endgroup$
    – Bernard
    Dec 24 '18 at 15:40










  • $begingroup$
    Are you trying to typeset limits from above/below? Just want to be sure before I edit with corrected LaTeX.
    $endgroup$
    – The Pointer
    Dec 24 '18 at 15:57




















  • $begingroup$
    For the term $$x^x$$ must be $$x>0$$ in the other case we get a complex number.
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 24 '18 at 15:32






  • 1




    $begingroup$
    How did you write $left( -1 right)^y = 1$? Don't you think if we take a sequence $dfrac{1}{n}$, $left( -1 right)^{frac{1}{n}}$ may not be defined in $mathbb{R}$?
    $endgroup$
    – Aniruddha Deshmukh
    Dec 24 '18 at 15:32






  • 2




    $begingroup$
    It depends on your definition of $a^b$ for $a<0$, but using $a^b=e^{b(ln(-a)+pi i)}$ your argument should work.
    $endgroup$
    – SmileyCraft
    Dec 24 '18 at 15:33








  • 1




    $begingroup$
    $x^y$ is not defined if$x<0$ and$y$ is not an integer.
    $endgroup$
    – Bernard
    Dec 24 '18 at 15:40










  • $begingroup$
    Are you trying to typeset limits from above/below? Just want to be sure before I edit with corrected LaTeX.
    $endgroup$
    – The Pointer
    Dec 24 '18 at 15:57


















$begingroup$
For the term $$x^x$$ must be $$x>0$$ in the other case we get a complex number.
$endgroup$
– Dr. Sonnhard Graubner
Dec 24 '18 at 15:32




$begingroup$
For the term $$x^x$$ must be $$x>0$$ in the other case we get a complex number.
$endgroup$
– Dr. Sonnhard Graubner
Dec 24 '18 at 15:32




1




1




$begingroup$
How did you write $left( -1 right)^y = 1$? Don't you think if we take a sequence $dfrac{1}{n}$, $left( -1 right)^{frac{1}{n}}$ may not be defined in $mathbb{R}$?
$endgroup$
– Aniruddha Deshmukh
Dec 24 '18 at 15:32




$begingroup$
How did you write $left( -1 right)^y = 1$? Don't you think if we take a sequence $dfrac{1}{n}$, $left( -1 right)^{frac{1}{n}}$ may not be defined in $mathbb{R}$?
$endgroup$
– Aniruddha Deshmukh
Dec 24 '18 at 15:32




2




2




$begingroup$
It depends on your definition of $a^b$ for $a<0$, but using $a^b=e^{b(ln(-a)+pi i)}$ your argument should work.
$endgroup$
– SmileyCraft
Dec 24 '18 at 15:33






$begingroup$
It depends on your definition of $a^b$ for $a<0$, but using $a^b=e^{b(ln(-a)+pi i)}$ your argument should work.
$endgroup$
– SmileyCraft
Dec 24 '18 at 15:33






1




1




$begingroup$
$x^y$ is not defined if$x<0$ and$y$ is not an integer.
$endgroup$
– Bernard
Dec 24 '18 at 15:40




$begingroup$
$x^y$ is not defined if$x<0$ and$y$ is not an integer.
$endgroup$
– Bernard
Dec 24 '18 at 15:40












$begingroup$
Are you trying to typeset limits from above/below? Just want to be sure before I edit with corrected LaTeX.
$endgroup$
– The Pointer
Dec 24 '18 at 15:57






$begingroup$
Are you trying to typeset limits from above/below? Just want to be sure before I edit with corrected LaTeX.
$endgroup$
– The Pointer
Dec 24 '18 at 15:57












2 Answers
2






active

oldest

votes


















2












$begingroup$

For complex values of $z$ and $w$, we have by definition



$$begin{align}
z^w&=e^{wlog(z)}\\
&=e^{wtext{Log}(|z|)+iwarg(z)}tag1
end{align}$$



where $text{Log}$ is the logarithm function of real variables and $arg(z)$ is the multi-valued argument of $z$.



Using $(1)$ reveals for $xin mathbb{R}$ and $x<0$



$$begin{align}
lim_{xto 0^-}x^x&=lim_{xto 0^-}e^{xtext{Log}(|x|)+ixarg(x)}\\
&=lim_{xto 0^-}x^{|x|}e^{ix(2n+1)pi}\\
&=1
end{align}$$



as was to be shown!






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Let $x<0$. It holds that $x^x=e^{xlog x} = e^{x (log(-x)+pi i)} = e^{xlog(-x)}(cos(pi x) + i sin (pi x))$. And I think you can complete the details.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Note that for $x<0$, $log(x)=text{Log}(|x|)+i(2n+1)pi$, for $nin mathbb{Z}$.
      $endgroup$
      – Mark Viola
      Dec 24 '18 at 16:17












    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051361%2fdoes-the-value-of-the-lim-x-to-0-xx-1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For complex values of $z$ and $w$, we have by definition



    $$begin{align}
    z^w&=e^{wlog(z)}\\
    &=e^{wtext{Log}(|z|)+iwarg(z)}tag1
    end{align}$$



    where $text{Log}$ is the logarithm function of real variables and $arg(z)$ is the multi-valued argument of $z$.



    Using $(1)$ reveals for $xin mathbb{R}$ and $x<0$



    $$begin{align}
    lim_{xto 0^-}x^x&=lim_{xto 0^-}e^{xtext{Log}(|x|)+ixarg(x)}\\
    &=lim_{xto 0^-}x^{|x|}e^{ix(2n+1)pi}\\
    &=1
    end{align}$$



    as was to be shown!






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      For complex values of $z$ and $w$, we have by definition



      $$begin{align}
      z^w&=e^{wlog(z)}\\
      &=e^{wtext{Log}(|z|)+iwarg(z)}tag1
      end{align}$$



      where $text{Log}$ is the logarithm function of real variables and $arg(z)$ is the multi-valued argument of $z$.



      Using $(1)$ reveals for $xin mathbb{R}$ and $x<0$



      $$begin{align}
      lim_{xto 0^-}x^x&=lim_{xto 0^-}e^{xtext{Log}(|x|)+ixarg(x)}\\
      &=lim_{xto 0^-}x^{|x|}e^{ix(2n+1)pi}\\
      &=1
      end{align}$$



      as was to be shown!






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        For complex values of $z$ and $w$, we have by definition



        $$begin{align}
        z^w&=e^{wlog(z)}\\
        &=e^{wtext{Log}(|z|)+iwarg(z)}tag1
        end{align}$$



        where $text{Log}$ is the logarithm function of real variables and $arg(z)$ is the multi-valued argument of $z$.



        Using $(1)$ reveals for $xin mathbb{R}$ and $x<0$



        $$begin{align}
        lim_{xto 0^-}x^x&=lim_{xto 0^-}e^{xtext{Log}(|x|)+ixarg(x)}\\
        &=lim_{xto 0^-}x^{|x|}e^{ix(2n+1)pi}\\
        &=1
        end{align}$$



        as was to be shown!






        share|cite|improve this answer









        $endgroup$



        For complex values of $z$ and $w$, we have by definition



        $$begin{align}
        z^w&=e^{wlog(z)}\\
        &=e^{wtext{Log}(|z|)+iwarg(z)}tag1
        end{align}$$



        where $text{Log}$ is the logarithm function of real variables and $arg(z)$ is the multi-valued argument of $z$.



        Using $(1)$ reveals for $xin mathbb{R}$ and $x<0$



        $$begin{align}
        lim_{xto 0^-}x^x&=lim_{xto 0^-}e^{xtext{Log}(|x|)+ixarg(x)}\\
        &=lim_{xto 0^-}x^{|x|}e^{ix(2n+1)pi}\\
        &=1
        end{align}$$



        as was to be shown!







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 24 '18 at 16:14









        Mark ViolaMark Viola

        134k1278177




        134k1278177























            0












            $begingroup$

            Let $x<0$. It holds that $x^x=e^{xlog x} = e^{x (log(-x)+pi i)} = e^{xlog(-x)}(cos(pi x) + i sin (pi x))$. And I think you can complete the details.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Note that for $x<0$, $log(x)=text{Log}(|x|)+i(2n+1)pi$, for $nin mathbb{Z}$.
              $endgroup$
              – Mark Viola
              Dec 24 '18 at 16:17
















            0












            $begingroup$

            Let $x<0$. It holds that $x^x=e^{xlog x} = e^{x (log(-x)+pi i)} = e^{xlog(-x)}(cos(pi x) + i sin (pi x))$. And I think you can complete the details.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Note that for $x<0$, $log(x)=text{Log}(|x|)+i(2n+1)pi$, for $nin mathbb{Z}$.
              $endgroup$
              – Mark Viola
              Dec 24 '18 at 16:17














            0












            0








            0





            $begingroup$

            Let $x<0$. It holds that $x^x=e^{xlog x} = e^{x (log(-x)+pi i)} = e^{xlog(-x)}(cos(pi x) + i sin (pi x))$. And I think you can complete the details.






            share|cite|improve this answer









            $endgroup$



            Let $x<0$. It holds that $x^x=e^{xlog x} = e^{x (log(-x)+pi i)} = e^{xlog(-x)}(cos(pi x) + i sin (pi x))$. And I think you can complete the details.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 24 '18 at 16:13









            MirceaMircea

            1736




            1736












            • $begingroup$
              Note that for $x<0$, $log(x)=text{Log}(|x|)+i(2n+1)pi$, for $nin mathbb{Z}$.
              $endgroup$
              – Mark Viola
              Dec 24 '18 at 16:17


















            • $begingroup$
              Note that for $x<0$, $log(x)=text{Log}(|x|)+i(2n+1)pi$, for $nin mathbb{Z}$.
              $endgroup$
              – Mark Viola
              Dec 24 '18 at 16:17
















            $begingroup$
            Note that for $x<0$, $log(x)=text{Log}(|x|)+i(2n+1)pi$, for $nin mathbb{Z}$.
            $endgroup$
            – Mark Viola
            Dec 24 '18 at 16:17




            $begingroup$
            Note that for $x<0$, $log(x)=text{Log}(|x|)+i(2n+1)pi$, for $nin mathbb{Z}$.
            $endgroup$
            – Mark Viola
            Dec 24 '18 at 16:17


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051361%2fdoes-the-value-of-the-lim-x-to-0-xx-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa