Lagrange four-squares theorem — deterministic complexity
$begingroup$
Lagrange's four-squares theorem states that every natural number can be represented as the sum of four integer squares. Rabin and Shallit gave a randomised algorithm that finds one of these solutions in quadratic time. My question is if anything is known about the deterministic time complexity of finding one of the solutions? Any pointers would be appreciated.
(It seems that enumerating all the solutions is hard as factoring in certain cases (via Jacobi's four-square theorem), but correct me if I am wrong.)
nt.number-theory computational-complexity sums-of-squares
New contributor
$endgroup$
add a comment |
$begingroup$
Lagrange's four-squares theorem states that every natural number can be represented as the sum of four integer squares. Rabin and Shallit gave a randomised algorithm that finds one of these solutions in quadratic time. My question is if anything is known about the deterministic time complexity of finding one of the solutions? Any pointers would be appreciated.
(It seems that enumerating all the solutions is hard as factoring in certain cases (via Jacobi's four-square theorem), but correct me if I am wrong.)
nt.number-theory computational-complexity sums-of-squares
New contributor
$endgroup$
1
$begingroup$
Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
$endgroup$
– Wojowu
Apr 19 at 13:51
add a comment |
$begingroup$
Lagrange's four-squares theorem states that every natural number can be represented as the sum of four integer squares. Rabin and Shallit gave a randomised algorithm that finds one of these solutions in quadratic time. My question is if anything is known about the deterministic time complexity of finding one of the solutions? Any pointers would be appreciated.
(It seems that enumerating all the solutions is hard as factoring in certain cases (via Jacobi's four-square theorem), but correct me if I am wrong.)
nt.number-theory computational-complexity sums-of-squares
New contributor
$endgroup$
Lagrange's four-squares theorem states that every natural number can be represented as the sum of four integer squares. Rabin and Shallit gave a randomised algorithm that finds one of these solutions in quadratic time. My question is if anything is known about the deterministic time complexity of finding one of the solutions? Any pointers would be appreciated.
(It seems that enumerating all the solutions is hard as factoring in certain cases (via Jacobi's four-square theorem), but correct me if I am wrong.)
nt.number-theory computational-complexity sums-of-squares
nt.number-theory computational-complexity sums-of-squares
New contributor
New contributor
edited Apr 20 at 9:45
Martin Sleziak
3,14032231
3,14032231
New contributor
asked Apr 19 at 13:22
Occams_TrimmerOccams_Trimmer
1735
1735
New contributor
New contributor
1
$begingroup$
Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
$endgroup$
– Wojowu
Apr 19 at 13:51
add a comment |
1
$begingroup$
Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
$endgroup$
– Wojowu
Apr 19 at 13:51
1
1
$begingroup$
Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
$endgroup$
– Wojowu
Apr 19 at 13:51
$begingroup$
Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
$endgroup$
– Wojowu
Apr 19 at 13:51
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
As far as I know, this is still an open problem. This is discussed in Section $5$ of the paper Finding the four squares in Lagrange's theorem by Pollack and Treviño. They mention that there is a deterministic algorithm when $n$ is a prime via quaterion multiplication, due to Bumby. Assuming a conjecture of Heath-Brown, there is a deterministic algorithm that works for all $n$. Finally, they mention that a positive proportion of all numbers can be written as the sum of four squares in deterministic polynomial time. Under the Extended Riemann Hypothesis, almost all numbers can be written as the sum of four squares in deterministic polynomial time.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Occams_Trimmer is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328449%2flagrange-four-squares-theorem-deterministic-complexity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As far as I know, this is still an open problem. This is discussed in Section $5$ of the paper Finding the four squares in Lagrange's theorem by Pollack and Treviño. They mention that there is a deterministic algorithm when $n$ is a prime via quaterion multiplication, due to Bumby. Assuming a conjecture of Heath-Brown, there is a deterministic algorithm that works for all $n$. Finally, they mention that a positive proportion of all numbers can be written as the sum of four squares in deterministic polynomial time. Under the Extended Riemann Hypothesis, almost all numbers can be written as the sum of four squares in deterministic polynomial time.
$endgroup$
add a comment |
$begingroup$
As far as I know, this is still an open problem. This is discussed in Section $5$ of the paper Finding the four squares in Lagrange's theorem by Pollack and Treviño. They mention that there is a deterministic algorithm when $n$ is a prime via quaterion multiplication, due to Bumby. Assuming a conjecture of Heath-Brown, there is a deterministic algorithm that works for all $n$. Finally, they mention that a positive proportion of all numbers can be written as the sum of four squares in deterministic polynomial time. Under the Extended Riemann Hypothesis, almost all numbers can be written as the sum of four squares in deterministic polynomial time.
$endgroup$
add a comment |
$begingroup$
As far as I know, this is still an open problem. This is discussed in Section $5$ of the paper Finding the four squares in Lagrange's theorem by Pollack and Treviño. They mention that there is a deterministic algorithm when $n$ is a prime via quaterion multiplication, due to Bumby. Assuming a conjecture of Heath-Brown, there is a deterministic algorithm that works for all $n$. Finally, they mention that a positive proportion of all numbers can be written as the sum of four squares in deterministic polynomial time. Under the Extended Riemann Hypothesis, almost all numbers can be written as the sum of four squares in deterministic polynomial time.
$endgroup$
As far as I know, this is still an open problem. This is discussed in Section $5$ of the paper Finding the four squares in Lagrange's theorem by Pollack and Treviño. They mention that there is a deterministic algorithm when $n$ is a prime via quaterion multiplication, due to Bumby. Assuming a conjecture of Heath-Brown, there is a deterministic algorithm that works for all $n$. Finally, they mention that a positive proportion of all numbers can be written as the sum of four squares in deterministic polynomial time. Under the Extended Riemann Hypothesis, almost all numbers can be written as the sum of four squares in deterministic polynomial time.
answered Apr 19 at 14:36
Tony HuynhTony Huynh
19.9k672131
19.9k672131
add a comment |
add a comment |
Occams_Trimmer is a new contributor. Be nice, and check out our Code of Conduct.
Occams_Trimmer is a new contributor. Be nice, and check out our Code of Conduct.
Occams_Trimmer is a new contributor. Be nice, and check out our Code of Conduct.
Occams_Trimmer is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328449%2flagrange-four-squares-theorem-deterministic-complexity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
$endgroup$
– Wojowu
Apr 19 at 13:51