Data prepration for logistic regression : Value either “not available” or a “year”












2












$begingroup$


I have some data of houses that have been renovated.



In my data there is one column (among others) that captures this information.



It is either "-1" if there has not been yet any renovation, or the information is the year of renovation like "1995" or "2008".



I would like to apply logistic regression.



However, I do not know how to treat this value.



IMHO it looks like a missing value although it is not a missing information.



So, does anybody have an idea how to put these (unordered) values into relation to the ordered years?



On alternative I could think of is binning the information. Like 1990-1995, 1996-2000,...2016-2019.



Any suggestions are highly appreciated.










share|improve this question







New contributor




toom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
    $endgroup$
    – Shamit Verma
    2 days ago










  • $begingroup$
    Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
    $endgroup$
    – toom
    2 days ago
















2












$begingroup$


I have some data of houses that have been renovated.



In my data there is one column (among others) that captures this information.



It is either "-1" if there has not been yet any renovation, or the information is the year of renovation like "1995" or "2008".



I would like to apply logistic regression.



However, I do not know how to treat this value.



IMHO it looks like a missing value although it is not a missing information.



So, does anybody have an idea how to put these (unordered) values into relation to the ordered years?



On alternative I could think of is binning the information. Like 1990-1995, 1996-2000,...2016-2019.



Any suggestions are highly appreciated.










share|improve this question







New contributor




toom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
    $endgroup$
    – Shamit Verma
    2 days ago










  • $begingroup$
    Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
    $endgroup$
    – toom
    2 days ago














2












2








2





$begingroup$


I have some data of houses that have been renovated.



In my data there is one column (among others) that captures this information.



It is either "-1" if there has not been yet any renovation, or the information is the year of renovation like "1995" or "2008".



I would like to apply logistic regression.



However, I do not know how to treat this value.



IMHO it looks like a missing value although it is not a missing information.



So, does anybody have an idea how to put these (unordered) values into relation to the ordered years?



On alternative I could think of is binning the information. Like 1990-1995, 1996-2000,...2016-2019.



Any suggestions are highly appreciated.










share|improve this question







New contributor




toom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I have some data of houses that have been renovated.



In my data there is one column (among others) that captures this information.



It is either "-1" if there has not been yet any renovation, or the information is the year of renovation like "1995" or "2008".



I would like to apply logistic regression.



However, I do not know how to treat this value.



IMHO it looks like a missing value although it is not a missing information.



So, does anybody have an idea how to put these (unordered) values into relation to the ordered years?



On alternative I could think of is binning the information. Like 1990-1995, 1996-2000,...2016-2019.



Any suggestions are highly appreciated.







logistic-regression missing-data






share|improve this question







New contributor




toom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




toom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




toom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









toomtoom

1112




1112




New contributor




toom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





toom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






toom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
    $endgroup$
    – Shamit Verma
    2 days ago










  • $begingroup$
    Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
    $endgroup$
    – toom
    2 days ago


















  • $begingroup$
    If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
    $endgroup$
    – Shamit Verma
    2 days ago










  • $begingroup$
    Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
    $endgroup$
    – toom
    2 days ago
















$begingroup$
If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
$endgroup$
– Shamit Verma
2 days ago




$begingroup$
If you change value of "year of renovation" to be same "year of construction" for houses that have not been renovated; does it makes sense for this problem ?
$endgroup$
– Shamit Verma
2 days ago












$begingroup$
Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
$endgroup$
– toom
2 days ago




$begingroup$
Yeah, this is a of course a good idea and it also makes sense. In my case this is however, not applicable. Thanks for mentioning
$endgroup$
– toom
2 days ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

First use a binary 0 (no renovation) and 1 (renovation) which works perfect with logistic regression.



Using the exact date is a bad practice. It guides the model in the direction of over-fitting on specific dates. For example, a pattern from 2006 would be specific to that year and would not help the future years. As an alternative, binning on larger spans like 5 years, 10 years (depends on the context) seems as an improvement. For example:



bins = [1990, 2000], [2000, 2010], [2010, 2020]

[1990, 2000] $rightarrow$ (1, 0, 0)

[2000, 2010] $rightarrow$ (0, 1, 0)

[2010, 2020] $rightarrow$ (0, 0, 1)



This approach also has a tendency to over-fit but over a larger time span. Also note that, this way, your model always has an expiration date, since if we pass the last bin in 2021, there is no bin to cover the year. And if we include [2020, 2030] now, there is no data to learn about this bin. And using [2020, forever] is equally useless for future.



I suggest using the age of construction and renovation which are generalizable. A 5 years old house in 2000 could help us infer about a 5 years old house in 2010, 2020, or 2030. For houses with no renovation, age could be set to -1, which works fine with logistic regression (experiment with 0 too). So as a final example:



renovation     (has renovation, renovation age)
-1 (0, -1)
2010 in 2019 (1, 9)


Note that repetitive time features are OK. For example, "Spring", "Monday", or "8:00PM", etc.






share|improve this answer











$endgroup$













  • $begingroup$
    Great advice. Thanks for this help. Makes sense :)
    $endgroup$
    – toom
    2 days ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






toom is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47586%2fdata-prepration-for-logistic-regression-value-either-not-available-or-a-yea%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

First use a binary 0 (no renovation) and 1 (renovation) which works perfect with logistic regression.



Using the exact date is a bad practice. It guides the model in the direction of over-fitting on specific dates. For example, a pattern from 2006 would be specific to that year and would not help the future years. As an alternative, binning on larger spans like 5 years, 10 years (depends on the context) seems as an improvement. For example:



bins = [1990, 2000], [2000, 2010], [2010, 2020]

[1990, 2000] $rightarrow$ (1, 0, 0)

[2000, 2010] $rightarrow$ (0, 1, 0)

[2010, 2020] $rightarrow$ (0, 0, 1)



This approach also has a tendency to over-fit but over a larger time span. Also note that, this way, your model always has an expiration date, since if we pass the last bin in 2021, there is no bin to cover the year. And if we include [2020, 2030] now, there is no data to learn about this bin. And using [2020, forever] is equally useless for future.



I suggest using the age of construction and renovation which are generalizable. A 5 years old house in 2000 could help us infer about a 5 years old house in 2010, 2020, or 2030. For houses with no renovation, age could be set to -1, which works fine with logistic regression (experiment with 0 too). So as a final example:



renovation     (has renovation, renovation age)
-1 (0, -1)
2010 in 2019 (1, 9)


Note that repetitive time features are OK. For example, "Spring", "Monday", or "8:00PM", etc.






share|improve this answer











$endgroup$













  • $begingroup$
    Great advice. Thanks for this help. Makes sense :)
    $endgroup$
    – toom
    2 days ago
















4












$begingroup$

First use a binary 0 (no renovation) and 1 (renovation) which works perfect with logistic regression.



Using the exact date is a bad practice. It guides the model in the direction of over-fitting on specific dates. For example, a pattern from 2006 would be specific to that year and would not help the future years. As an alternative, binning on larger spans like 5 years, 10 years (depends on the context) seems as an improvement. For example:



bins = [1990, 2000], [2000, 2010], [2010, 2020]

[1990, 2000] $rightarrow$ (1, 0, 0)

[2000, 2010] $rightarrow$ (0, 1, 0)

[2010, 2020] $rightarrow$ (0, 0, 1)



This approach also has a tendency to over-fit but over a larger time span. Also note that, this way, your model always has an expiration date, since if we pass the last bin in 2021, there is no bin to cover the year. And if we include [2020, 2030] now, there is no data to learn about this bin. And using [2020, forever] is equally useless for future.



I suggest using the age of construction and renovation which are generalizable. A 5 years old house in 2000 could help us infer about a 5 years old house in 2010, 2020, or 2030. For houses with no renovation, age could be set to -1, which works fine with logistic regression (experiment with 0 too). So as a final example:



renovation     (has renovation, renovation age)
-1 (0, -1)
2010 in 2019 (1, 9)


Note that repetitive time features are OK. For example, "Spring", "Monday", or "8:00PM", etc.






share|improve this answer











$endgroup$













  • $begingroup$
    Great advice. Thanks for this help. Makes sense :)
    $endgroup$
    – toom
    2 days ago














4












4








4





$begingroup$

First use a binary 0 (no renovation) and 1 (renovation) which works perfect with logistic regression.



Using the exact date is a bad practice. It guides the model in the direction of over-fitting on specific dates. For example, a pattern from 2006 would be specific to that year and would not help the future years. As an alternative, binning on larger spans like 5 years, 10 years (depends on the context) seems as an improvement. For example:



bins = [1990, 2000], [2000, 2010], [2010, 2020]

[1990, 2000] $rightarrow$ (1, 0, 0)

[2000, 2010] $rightarrow$ (0, 1, 0)

[2010, 2020] $rightarrow$ (0, 0, 1)



This approach also has a tendency to over-fit but over a larger time span. Also note that, this way, your model always has an expiration date, since if we pass the last bin in 2021, there is no bin to cover the year. And if we include [2020, 2030] now, there is no data to learn about this bin. And using [2020, forever] is equally useless for future.



I suggest using the age of construction and renovation which are generalizable. A 5 years old house in 2000 could help us infer about a 5 years old house in 2010, 2020, or 2030. For houses with no renovation, age could be set to -1, which works fine with logistic regression (experiment with 0 too). So as a final example:



renovation     (has renovation, renovation age)
-1 (0, -1)
2010 in 2019 (1, 9)


Note that repetitive time features are OK. For example, "Spring", "Monday", or "8:00PM", etc.






share|improve this answer











$endgroup$



First use a binary 0 (no renovation) and 1 (renovation) which works perfect with logistic regression.



Using the exact date is a bad practice. It guides the model in the direction of over-fitting on specific dates. For example, a pattern from 2006 would be specific to that year and would not help the future years. As an alternative, binning on larger spans like 5 years, 10 years (depends on the context) seems as an improvement. For example:



bins = [1990, 2000], [2000, 2010], [2010, 2020]

[1990, 2000] $rightarrow$ (1, 0, 0)

[2000, 2010] $rightarrow$ (0, 1, 0)

[2010, 2020] $rightarrow$ (0, 0, 1)



This approach also has a tendency to over-fit but over a larger time span. Also note that, this way, your model always has an expiration date, since if we pass the last bin in 2021, there is no bin to cover the year. And if we include [2020, 2030] now, there is no data to learn about this bin. And using [2020, forever] is equally useless for future.



I suggest using the age of construction and renovation which are generalizable. A 5 years old house in 2000 could help us infer about a 5 years old house in 2010, 2020, or 2030. For houses with no renovation, age could be set to -1, which works fine with logistic regression (experiment with 0 too). So as a final example:



renovation     (has renovation, renovation age)
-1 (0, -1)
2010 in 2019 (1, 9)


Note that repetitive time features are OK. For example, "Spring", "Monday", or "8:00PM", etc.







share|improve this answer














share|improve this answer



share|improve this answer








edited 2 days ago

























answered 2 days ago









EsmailianEsmailian

1,651114




1,651114












  • $begingroup$
    Great advice. Thanks for this help. Makes sense :)
    $endgroup$
    – toom
    2 days ago


















  • $begingroup$
    Great advice. Thanks for this help. Makes sense :)
    $endgroup$
    – toom
    2 days ago
















$begingroup$
Great advice. Thanks for this help. Makes sense :)
$endgroup$
– toom
2 days ago




$begingroup$
Great advice. Thanks for this help. Makes sense :)
$endgroup$
– toom
2 days ago










toom is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















toom is a new contributor. Be nice, and check out our Code of Conduct.













toom is a new contributor. Be nice, and check out our Code of Conduct.












toom is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Data Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47586%2fdata-prepration-for-logistic-regression-value-either-not-available-or-a-yea%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa