The multiplication of list of matrices
$begingroup$
I need to multiply 3 lists of matrices (b.a.b) as the following code
a = {{{-17.8227277373099`, -1.6565234964560602`},
{-1.6565234954649242`,
5.298073701591974`}}, {{-17.812203521929003`,
-1.5013126607114478`}, {-1.5013126574896714`,
4.384050851253119`}}, {{-17.801677045750512`,
-1.4055541329078751`}, {-1.405554138172727`,
3.869511752542245`}}};
b = {{{0.8409518416651456`, 0}, {0,
0.1274293000222242`}}, {{0.8409815693580924`, 0}, {0,
0.14187218616724442`}}, {{0.841011296000238`, 0}, {0,
0.15290209433231844`}}};
I used the following:
mat = b.a.b
But, I think this way is not correct because I didn't get the result. Also, I make a test for the first matrices as the following code, that what I wanted to get for the whole matrices multiplication.
a1 = {{-17.8227277373099`, -1.6565234964560602`},
{-1.6565234954649242`, 5.298073701591974`}};
b1 = {{0.8409518416651456`, 0}, {0, 0.1274293000222242`}};
mat1 = b1.a1.b1
{{-12.6042, -0.177516}, {-0.177516, 0.0860313}}
Thanks.
list-manipulation matrix
$endgroup$
add a comment |
$begingroup$
I need to multiply 3 lists of matrices (b.a.b) as the following code
a = {{{-17.8227277373099`, -1.6565234964560602`},
{-1.6565234954649242`,
5.298073701591974`}}, {{-17.812203521929003`,
-1.5013126607114478`}, {-1.5013126574896714`,
4.384050851253119`}}, {{-17.801677045750512`,
-1.4055541329078751`}, {-1.405554138172727`,
3.869511752542245`}}};
b = {{{0.8409518416651456`, 0}, {0,
0.1274293000222242`}}, {{0.8409815693580924`, 0}, {0,
0.14187218616724442`}}, {{0.841011296000238`, 0}, {0,
0.15290209433231844`}}};
I used the following:
mat = b.a.b
But, I think this way is not correct because I didn't get the result. Also, I make a test for the first matrices as the following code, that what I wanted to get for the whole matrices multiplication.
a1 = {{-17.8227277373099`, -1.6565234964560602`},
{-1.6565234954649242`, 5.298073701591974`}};
b1 = {{0.8409518416651456`, 0}, {0, 0.1274293000222242`}};
mat1 = b1.a1.b1
{{-12.6042, -0.177516}, {-0.177516, 0.0860313}}
Thanks.
list-manipulation matrix
$endgroup$
1
$begingroup$
Table[b[[i]].a[[i]].b[[i]], {i, 1, 3}]
or#[[2]].#[[1]].#[[2]] & /@ Transpose[{a, b}]
.
$endgroup$
– corey979
Mar 18 at 21:06
$begingroup$
Thanks a lot corey979!
$endgroup$
– Ghady
2 days ago
add a comment |
$begingroup$
I need to multiply 3 lists of matrices (b.a.b) as the following code
a = {{{-17.8227277373099`, -1.6565234964560602`},
{-1.6565234954649242`,
5.298073701591974`}}, {{-17.812203521929003`,
-1.5013126607114478`}, {-1.5013126574896714`,
4.384050851253119`}}, {{-17.801677045750512`,
-1.4055541329078751`}, {-1.405554138172727`,
3.869511752542245`}}};
b = {{{0.8409518416651456`, 0}, {0,
0.1274293000222242`}}, {{0.8409815693580924`, 0}, {0,
0.14187218616724442`}}, {{0.841011296000238`, 0}, {0,
0.15290209433231844`}}};
I used the following:
mat = b.a.b
But, I think this way is not correct because I didn't get the result. Also, I make a test for the first matrices as the following code, that what I wanted to get for the whole matrices multiplication.
a1 = {{-17.8227277373099`, -1.6565234964560602`},
{-1.6565234954649242`, 5.298073701591974`}};
b1 = {{0.8409518416651456`, 0}, {0, 0.1274293000222242`}};
mat1 = b1.a1.b1
{{-12.6042, -0.177516}, {-0.177516, 0.0860313}}
Thanks.
list-manipulation matrix
$endgroup$
I need to multiply 3 lists of matrices (b.a.b) as the following code
a = {{{-17.8227277373099`, -1.6565234964560602`},
{-1.6565234954649242`,
5.298073701591974`}}, {{-17.812203521929003`,
-1.5013126607114478`}, {-1.5013126574896714`,
4.384050851253119`}}, {{-17.801677045750512`,
-1.4055541329078751`}, {-1.405554138172727`,
3.869511752542245`}}};
b = {{{0.8409518416651456`, 0}, {0,
0.1274293000222242`}}, {{0.8409815693580924`, 0}, {0,
0.14187218616724442`}}, {{0.841011296000238`, 0}, {0,
0.15290209433231844`}}};
I used the following:
mat = b.a.b
But, I think this way is not correct because I didn't get the result. Also, I make a test for the first matrices as the following code, that what I wanted to get for the whole matrices multiplication.
a1 = {{-17.8227277373099`, -1.6565234964560602`},
{-1.6565234954649242`, 5.298073701591974`}};
b1 = {{0.8409518416651456`, 0}, {0, 0.1274293000222242`}};
mat1 = b1.a1.b1
{{-12.6042, -0.177516}, {-0.177516, 0.0860313}}
Thanks.
list-manipulation matrix
list-manipulation matrix
asked Mar 18 at 20:56
GhadyGhady
696
696
1
$begingroup$
Table[b[[i]].a[[i]].b[[i]], {i, 1, 3}]
or#[[2]].#[[1]].#[[2]] & /@ Transpose[{a, b}]
.
$endgroup$
– corey979
Mar 18 at 21:06
$begingroup$
Thanks a lot corey979!
$endgroup$
– Ghady
2 days ago
add a comment |
1
$begingroup$
Table[b[[i]].a[[i]].b[[i]], {i, 1, 3}]
or#[[2]].#[[1]].#[[2]] & /@ Transpose[{a, b}]
.
$endgroup$
– corey979
Mar 18 at 21:06
$begingroup$
Thanks a lot corey979!
$endgroup$
– Ghady
2 days ago
1
1
$begingroup$
Table[b[[i]].a[[i]].b[[i]], {i, 1, 3}]
or #[[2]].#[[1]].#[[2]] & /@ Transpose[{a, b}]
.$endgroup$
– corey979
Mar 18 at 21:06
$begingroup$
Table[b[[i]].a[[i]].b[[i]], {i, 1, 3}]
or #[[2]].#[[1]].#[[2]] & /@ Transpose[{a, b}]
.$endgroup$
– corey979
Mar 18 at 21:06
$begingroup$
Thanks a lot corey979!
$endgroup$
– Ghady
2 days ago
$begingroup$
Thanks a lot corey979!
$endgroup$
– Ghady
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Using MapThread
and Dot
:
MapThread[Dot, {b, a, b}]
$endgroup$
$begingroup$
Thank you very much, It is the easiest!
$endgroup$
– Ghady
2 days ago
add a comment |
$begingroup$
If you need it really fast, then use Compile
:
n = 1000000;
a = RandomReal[{-1, 1}, {n, 2, 2}];
b = RandomReal[{-1, 1}, {n, 2, 2}];
cf = Compile[{{a, _Real, 2}, {b, _Real, 2}},
b.a.b,
RuntimeAttributes -> Listable,
Parallelization -> True
];
MapThread[Dot, {b, a, b}]; // AbsoluteTiming // First
cf[a, b]; // AbsoluteTiming // First
1.46343
0.075722
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Ghady
2 days ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 days ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193512%2fthe-multiplication-of-list-of-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using MapThread
and Dot
:
MapThread[Dot, {b, a, b}]
$endgroup$
$begingroup$
Thank you very much, It is the easiest!
$endgroup$
– Ghady
2 days ago
add a comment |
$begingroup$
Using MapThread
and Dot
:
MapThread[Dot, {b, a, b}]
$endgroup$
$begingroup$
Thank you very much, It is the easiest!
$endgroup$
– Ghady
2 days ago
add a comment |
$begingroup$
Using MapThread
and Dot
:
MapThread[Dot, {b, a, b}]
$endgroup$
Using MapThread
and Dot
:
MapThread[Dot, {b, a, b}]
answered Mar 18 at 21:21
swishswish
4,1761535
4,1761535
$begingroup$
Thank you very much, It is the easiest!
$endgroup$
– Ghady
2 days ago
add a comment |
$begingroup$
Thank you very much, It is the easiest!
$endgroup$
– Ghady
2 days ago
$begingroup$
Thank you very much, It is the easiest!
$endgroup$
– Ghady
2 days ago
$begingroup$
Thank you very much, It is the easiest!
$endgroup$
– Ghady
2 days ago
add a comment |
$begingroup$
If you need it really fast, then use Compile
:
n = 1000000;
a = RandomReal[{-1, 1}, {n, 2, 2}];
b = RandomReal[{-1, 1}, {n, 2, 2}];
cf = Compile[{{a, _Real, 2}, {b, _Real, 2}},
b.a.b,
RuntimeAttributes -> Listable,
Parallelization -> True
];
MapThread[Dot, {b, a, b}]; // AbsoluteTiming // First
cf[a, b]; // AbsoluteTiming // First
1.46343
0.075722
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Ghady
2 days ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 days ago
add a comment |
$begingroup$
If you need it really fast, then use Compile
:
n = 1000000;
a = RandomReal[{-1, 1}, {n, 2, 2}];
b = RandomReal[{-1, 1}, {n, 2, 2}];
cf = Compile[{{a, _Real, 2}, {b, _Real, 2}},
b.a.b,
RuntimeAttributes -> Listable,
Parallelization -> True
];
MapThread[Dot, {b, a, b}]; // AbsoluteTiming // First
cf[a, b]; // AbsoluteTiming // First
1.46343
0.075722
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Ghady
2 days ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 days ago
add a comment |
$begingroup$
If you need it really fast, then use Compile
:
n = 1000000;
a = RandomReal[{-1, 1}, {n, 2, 2}];
b = RandomReal[{-1, 1}, {n, 2, 2}];
cf = Compile[{{a, _Real, 2}, {b, _Real, 2}},
b.a.b,
RuntimeAttributes -> Listable,
Parallelization -> True
];
MapThread[Dot, {b, a, b}]; // AbsoluteTiming // First
cf[a, b]; // AbsoluteTiming // First
1.46343
0.075722
$endgroup$
If you need it really fast, then use Compile
:
n = 1000000;
a = RandomReal[{-1, 1}, {n, 2, 2}];
b = RandomReal[{-1, 1}, {n, 2, 2}];
cf = Compile[{{a, _Real, 2}, {b, _Real, 2}},
b.a.b,
RuntimeAttributes -> Listable,
Parallelization -> True
];
MapThread[Dot, {b, a, b}]; // AbsoluteTiming // First
cf[a, b]; // AbsoluteTiming // First
1.46343
0.075722
edited 2 days ago
answered Mar 18 at 23:36
Henrik SchumacherHenrik Schumacher
57.4k578158
57.4k578158
$begingroup$
Thank you very much!
$endgroup$
– Ghady
2 days ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 days ago
add a comment |
$begingroup$
Thank you very much!
$endgroup$
– Ghady
2 days ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 days ago
$begingroup$
Thank you very much!
$endgroup$
– Ghady
2 days ago
$begingroup$
Thank you very much!
$endgroup$
– Ghady
2 days ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 days ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 days ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193512%2fthe-multiplication-of-list-of-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Table[b[[i]].a[[i]].b[[i]], {i, 1, 3}]
or#[[2]].#[[1]].#[[2]] & /@ Transpose[{a, b}]
.$endgroup$
– corey979
Mar 18 at 21:06
$begingroup$
Thanks a lot corey979!
$endgroup$
– Ghady
2 days ago