How to determine the greatest d orbital splitting?
$begingroup$
This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.
Which complex has the greatest d orbital splitting?
It gives 4 Complexes $ce{[Fe(H_2O)_6]^{2+}}$, $ce{[Fe(H_2O)_6]^{3+}}$, $ce{[Co(H_2O)_6]^{3+}}$, $ce{[Cr(NH_3)_6]^{3+}}$ and it says that they give the colours green, orange, blue and violet respectively.
Initially I thought that the answer would be $ce{[Cr(NH_3)_6]^{3+}}$ because it gives the highest energy light, being violet. However, the answer is given as $ce{[Fe(H_2O)_6]^{3+}}$, why is this?
ions transition-metals oxidation-state color
$endgroup$
add a comment |
$begingroup$
This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.
Which complex has the greatest d orbital splitting?
It gives 4 Complexes $ce{[Fe(H_2O)_6]^{2+}}$, $ce{[Fe(H_2O)_6]^{3+}}$, $ce{[Co(H_2O)_6]^{3+}}$, $ce{[Cr(NH_3)_6]^{3+}}$ and it says that they give the colours green, orange, blue and violet respectively.
Initially I thought that the answer would be $ce{[Cr(NH_3)_6]^{3+}}$ because it gives the highest energy light, being violet. However, the answer is given as $ce{[Fe(H_2O)_6]^{3+}}$, why is this?
ions transition-metals oxidation-state color
$endgroup$
add a comment |
$begingroup$
This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.
Which complex has the greatest d orbital splitting?
It gives 4 Complexes $ce{[Fe(H_2O)_6]^{2+}}$, $ce{[Fe(H_2O)_6]^{3+}}$, $ce{[Co(H_2O)_6]^{3+}}$, $ce{[Cr(NH_3)_6]^{3+}}$ and it says that they give the colours green, orange, blue and violet respectively.
Initially I thought that the answer would be $ce{[Cr(NH_3)_6]^{3+}}$ because it gives the highest energy light, being violet. However, the answer is given as $ce{[Fe(H_2O)_6]^{3+}}$, why is this?
ions transition-metals oxidation-state color
$endgroup$
This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.
Which complex has the greatest d orbital splitting?
It gives 4 Complexes $ce{[Fe(H_2O)_6]^{2+}}$, $ce{[Fe(H_2O)_6]^{3+}}$, $ce{[Co(H_2O)_6]^{3+}}$, $ce{[Cr(NH_3)_6]^{3+}}$ and it says that they give the colours green, orange, blue and violet respectively.
Initially I thought that the answer would be $ce{[Cr(NH_3)_6]^{3+}}$ because it gives the highest energy light, being violet. However, the answer is given as $ce{[Fe(H_2O)_6]^{3+}}$, why is this?
ions transition-metals oxidation-state color
ions transition-metals oxidation-state color
edited 2 days ago
Mathew Mahindaratne
1,50313
1,50313
asked 2 days ago
Anthony PAnthony P
172
172
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.
$endgroup$
$begingroup$
Please explain how is it 'complementary'.
$endgroup$
– Pan
2 days ago
$begingroup$
From what I understand, $ce{[Cr(NH_3)_6]^{3+}}$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ce{NH_3}$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
$endgroup$
– Anthony P
yesterday
$begingroup$
@AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
$endgroup$
– orthocresol♦
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "431"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111200%2fhow-to-determine-the-greatest-d-orbital-splitting%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.
$endgroup$
$begingroup$
Please explain how is it 'complementary'.
$endgroup$
– Pan
2 days ago
$begingroup$
From what I understand, $ce{[Cr(NH_3)_6]^{3+}}$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ce{NH_3}$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
$endgroup$
– Anthony P
yesterday
$begingroup$
@AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
$endgroup$
– orthocresol♦
yesterday
add a comment |
$begingroup$
The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.
$endgroup$
$begingroup$
Please explain how is it 'complementary'.
$endgroup$
– Pan
2 days ago
$begingroup$
From what I understand, $ce{[Cr(NH_3)_6]^{3+}}$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ce{NH_3}$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
$endgroup$
– Anthony P
yesterday
$begingroup$
@AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
$endgroup$
– orthocresol♦
yesterday
add a comment |
$begingroup$
The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.
$endgroup$
The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.
answered 2 days ago
orthocresol♦orthocresol
39.7k7114243
39.7k7114243
$begingroup$
Please explain how is it 'complementary'.
$endgroup$
– Pan
2 days ago
$begingroup$
From what I understand, $ce{[Cr(NH_3)_6]^{3+}}$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ce{NH_3}$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
$endgroup$
– Anthony P
yesterday
$begingroup$
@AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
$endgroup$
– orthocresol♦
yesterday
add a comment |
$begingroup$
Please explain how is it 'complementary'.
$endgroup$
– Pan
2 days ago
$begingroup$
From what I understand, $ce{[Cr(NH_3)_6]^{3+}}$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ce{NH_3}$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
$endgroup$
– Anthony P
yesterday
$begingroup$
@AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
$endgroup$
– orthocresol♦
yesterday
$begingroup$
Please explain how is it 'complementary'.
$endgroup$
– Pan
2 days ago
$begingroup$
Please explain how is it 'complementary'.
$endgroup$
– Pan
2 days ago
$begingroup$
From what I understand, $ce{[Cr(NH_3)_6]^{3+}}$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ce{NH_3}$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
$endgroup$
– Anthony P
yesterday
$begingroup$
From what I understand, $ce{[Cr(NH_3)_6]^{3+}}$ would be absorbing the complementary colour of violet being yellow, which is low energy. However, how does this make any sense because $ce{NH_3}$ is a strong field ligand which should create a large d orbital splitting, therefore being able to absorb higher energy lights?
$endgroup$
– Anthony P
yesterday
$begingroup$
@AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
$endgroup$
– orthocresol♦
yesterday
$begingroup$
@AnthonyP The splitting of the d orbitals is not only a function of the ligand, but also the metal (the atom type as well as the oxidation state). It therefore isn’t correct to only look at the ligand. Apart from that, NH3 isn’t even particularly strong-field; it’s only marginally higher than H2O in the spectrochemical series.
$endgroup$
– orthocresol♦
yesterday
add a comment |
Thanks for contributing an answer to Chemistry Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111200%2fhow-to-determine-the-greatest-d-orbital-splitting%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown