Conditional expectation of a function with independent random variables
up vote
0
down vote
favorite
If $X_1, ..., X_{n+1}$ are independent real random variables and $h:mathbb{R}^{n+1} to mathbb{R}$ a Borel function. Now taking the conditional expectation $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$
Assuming $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ show that if
$g(x_1, ldots, x_n) = mathbb{E}[h(x_1, ldots, x_n, X_{n+1})]$ then
$g(X_1, ldots, X_n)$ is a version of $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$.
The claim would follow from the definition of conditional expectation, if we can show that
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = mathbb{E}[g(X_1, ldots, X_{n}) mathbf{1}_G], $$
for all $G in sigma(X_1, ldots, X_n)$.
What I tried so far is trying to expand the expectations and rewrite them with Fubini's theorem.
Assuming the underlying probability space is $(Omega, mathcal{F}, P)$.
I thought I could rewrite with a restricted push forward $P_{|G}^{X_i}(A) = P(X_i^{-1}(A) cap G)$ to get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_1, ldots, X_{n+1}} $$
All variables are $X_i$ independet so we can factor $dP_{|G}^{X_1, ldots, X_{n+1}} = d Pi_{i=1}^{n+1} P_{|G}^{X_i}$.
$$ = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) d Pi_{i=1}^{n+1} P_{|G}^{X_i} = int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1}in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=1}^{n} P_{|G}^{X_i} $$
Now $P_{|G}^{X_{n+1}}(A) = P(X_{n+1}^{-1}(A)cap G) = P(X_{n+1}^{-1}(A))P(G)$, since $sigma(X_{n+1})$ and $sigma(X_1,ldots, X_n)$ are independet. Since $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ Fubini applies and we get
$$ int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)int_{(x_1, ldots x_{n})in mathbb{R}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} $$
$$ = P(G) int_{(x_1, ldots x_{n}) in mathbb{R}^n} E[h(x_1, ldots, X_{n+1})] d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G) int_{(x_1, ldots x_{n})in mathbb{R}^n} g(x_1, ldots, x_n) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G]. $$
So I the end I get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G],$$ which is wrong according to the claim!
I can't spot my mistake. So is the claim really true and if so where do I mess up?
probability measure-theory conditional-expectation
add a comment |
up vote
0
down vote
favorite
If $X_1, ..., X_{n+1}$ are independent real random variables and $h:mathbb{R}^{n+1} to mathbb{R}$ a Borel function. Now taking the conditional expectation $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$
Assuming $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ show that if
$g(x_1, ldots, x_n) = mathbb{E}[h(x_1, ldots, x_n, X_{n+1})]$ then
$g(X_1, ldots, X_n)$ is a version of $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$.
The claim would follow from the definition of conditional expectation, if we can show that
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = mathbb{E}[g(X_1, ldots, X_{n}) mathbf{1}_G], $$
for all $G in sigma(X_1, ldots, X_n)$.
What I tried so far is trying to expand the expectations and rewrite them with Fubini's theorem.
Assuming the underlying probability space is $(Omega, mathcal{F}, P)$.
I thought I could rewrite with a restricted push forward $P_{|G}^{X_i}(A) = P(X_i^{-1}(A) cap G)$ to get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_1, ldots, X_{n+1}} $$
All variables are $X_i$ independet so we can factor $dP_{|G}^{X_1, ldots, X_{n+1}} = d Pi_{i=1}^{n+1} P_{|G}^{X_i}$.
$$ = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) d Pi_{i=1}^{n+1} P_{|G}^{X_i} = int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1}in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=1}^{n} P_{|G}^{X_i} $$
Now $P_{|G}^{X_{n+1}}(A) = P(X_{n+1}^{-1}(A)cap G) = P(X_{n+1}^{-1}(A))P(G)$, since $sigma(X_{n+1})$ and $sigma(X_1,ldots, X_n)$ are independet. Since $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ Fubini applies and we get
$$ int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)int_{(x_1, ldots x_{n})in mathbb{R}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} $$
$$ = P(G) int_{(x_1, ldots x_{n}) in mathbb{R}^n} E[h(x_1, ldots, X_{n+1})] d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G) int_{(x_1, ldots x_{n})in mathbb{R}^n} g(x_1, ldots, x_n) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G]. $$
So I the end I get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G],$$ which is wrong according to the claim!
I can't spot my mistake. So is the claim really true and if so where do I mess up?
probability measure-theory conditional-expectation
There is no reason to use $P_{|G}$.
– d.k.o.
Nov 10 at 21:51
Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
– Eberhardt
Nov 11 at 11:41
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
If $X_1, ..., X_{n+1}$ are independent real random variables and $h:mathbb{R}^{n+1} to mathbb{R}$ a Borel function. Now taking the conditional expectation $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$
Assuming $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ show that if
$g(x_1, ldots, x_n) = mathbb{E}[h(x_1, ldots, x_n, X_{n+1})]$ then
$g(X_1, ldots, X_n)$ is a version of $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$.
The claim would follow from the definition of conditional expectation, if we can show that
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = mathbb{E}[g(X_1, ldots, X_{n}) mathbf{1}_G], $$
for all $G in sigma(X_1, ldots, X_n)$.
What I tried so far is trying to expand the expectations and rewrite them with Fubini's theorem.
Assuming the underlying probability space is $(Omega, mathcal{F}, P)$.
I thought I could rewrite with a restricted push forward $P_{|G}^{X_i}(A) = P(X_i^{-1}(A) cap G)$ to get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_1, ldots, X_{n+1}} $$
All variables are $X_i$ independet so we can factor $dP_{|G}^{X_1, ldots, X_{n+1}} = d Pi_{i=1}^{n+1} P_{|G}^{X_i}$.
$$ = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) d Pi_{i=1}^{n+1} P_{|G}^{X_i} = int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1}in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=1}^{n} P_{|G}^{X_i} $$
Now $P_{|G}^{X_{n+1}}(A) = P(X_{n+1}^{-1}(A)cap G) = P(X_{n+1}^{-1}(A))P(G)$, since $sigma(X_{n+1})$ and $sigma(X_1,ldots, X_n)$ are independet. Since $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ Fubini applies and we get
$$ int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)int_{(x_1, ldots x_{n})in mathbb{R}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} $$
$$ = P(G) int_{(x_1, ldots x_{n}) in mathbb{R}^n} E[h(x_1, ldots, X_{n+1})] d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G) int_{(x_1, ldots x_{n})in mathbb{R}^n} g(x_1, ldots, x_n) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G]. $$
So I the end I get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G],$$ which is wrong according to the claim!
I can't spot my mistake. So is the claim really true and if so where do I mess up?
probability measure-theory conditional-expectation
If $X_1, ..., X_{n+1}$ are independent real random variables and $h:mathbb{R}^{n+1} to mathbb{R}$ a Borel function. Now taking the conditional expectation $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$
Assuming $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ show that if
$g(x_1, ldots, x_n) = mathbb{E}[h(x_1, ldots, x_n, X_{n+1})]$ then
$g(X_1, ldots, X_n)$ is a version of $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$.
The claim would follow from the definition of conditional expectation, if we can show that
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = mathbb{E}[g(X_1, ldots, X_{n}) mathbf{1}_G], $$
for all $G in sigma(X_1, ldots, X_n)$.
What I tried so far is trying to expand the expectations and rewrite them with Fubini's theorem.
Assuming the underlying probability space is $(Omega, mathcal{F}, P)$.
I thought I could rewrite with a restricted push forward $P_{|G}^{X_i}(A) = P(X_i^{-1}(A) cap G)$ to get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_1, ldots, X_{n+1}} $$
All variables are $X_i$ independet so we can factor $dP_{|G}^{X_1, ldots, X_{n+1}} = d Pi_{i=1}^{n+1} P_{|G}^{X_i}$.
$$ = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) d Pi_{i=1}^{n+1} P_{|G}^{X_i} = int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1}in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=1}^{n} P_{|G}^{X_i} $$
Now $P_{|G}^{X_{n+1}}(A) = P(X_{n+1}^{-1}(A)cap G) = P(X_{n+1}^{-1}(A))P(G)$, since $sigma(X_{n+1})$ and $sigma(X_1,ldots, X_n)$ are independet. Since $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ Fubini applies and we get
$$ int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)int_{(x_1, ldots x_{n})in mathbb{R}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} $$
$$ = P(G) int_{(x_1, ldots x_{n}) in mathbb{R}^n} E[h(x_1, ldots, X_{n+1})] d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G) int_{(x_1, ldots x_{n})in mathbb{R}^n} g(x_1, ldots, x_n) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G]. $$
So I the end I get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G],$$ which is wrong according to the claim!
I can't spot my mistake. So is the claim really true and if so where do I mess up?
probability measure-theory conditional-expectation
probability measure-theory conditional-expectation
edited Nov 10 at 21:12
asked Nov 10 at 17:25
Eberhardt
93116
93116
There is no reason to use $P_{|G}$.
– d.k.o.
Nov 10 at 21:51
Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
– Eberhardt
Nov 11 at 11:41
add a comment |
There is no reason to use $P_{|G}$.
– d.k.o.
Nov 10 at 21:51
Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
– Eberhardt
Nov 11 at 11:41
There is no reason to use $P_{|G}$.
– d.k.o.
Nov 10 at 21:51
There is no reason to use $P_{|G}$.
– d.k.o.
Nov 10 at 21:51
Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
– Eberhardt
Nov 11 at 11:41
Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
– Eberhardt
Nov 11 at 11:41
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Denote $X=(X_1,dots,X_n)sim mu$ and $Y=X_{n+1}sim nu$, then $X,Y$ are independent and $(X,Y)sim mu times nu$. Also,
$$ g(x)=int_{mathbb{R}}h(x,y)nu(dy) quad xin mathbb{R}^n.$$ Thus $$g(X)=mathbb{E}[h(X,Y)|X].$$
In fact, $g(X)$ is $sigma(X)$-measurable and
$$ mathbb{E}[g(X)1_{{Xin A}}]=
mathbb{E}[g(X)1_A(X)]= int_{mathbb{R}^n} g(x)1_A(x) mu(dx)=int_{mathbb{R}^n} left( int_{mathbb{R}} h(x,y)nu(dy)right)1_A(x)mu(dx) = int_{mathbb{R}^ntimes mathbb{R}} h(x,y)1_A(x)mutimes nu(dxtimes dy) = mathbb{E}[h(X,Y)1_A(X)]=
mathbb{E}[h(X,Y)1_{{Xin A}}]$$ for all $Ain mathcal{B}_{mathbb{R}^n}$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Denote $X=(X_1,dots,X_n)sim mu$ and $Y=X_{n+1}sim nu$, then $X,Y$ are independent and $(X,Y)sim mu times nu$. Also,
$$ g(x)=int_{mathbb{R}}h(x,y)nu(dy) quad xin mathbb{R}^n.$$ Thus $$g(X)=mathbb{E}[h(X,Y)|X].$$
In fact, $g(X)$ is $sigma(X)$-measurable and
$$ mathbb{E}[g(X)1_{{Xin A}}]=
mathbb{E}[g(X)1_A(X)]= int_{mathbb{R}^n} g(x)1_A(x) mu(dx)=int_{mathbb{R}^n} left( int_{mathbb{R}} h(x,y)nu(dy)right)1_A(x)mu(dx) = int_{mathbb{R}^ntimes mathbb{R}} h(x,y)1_A(x)mutimes nu(dxtimes dy) = mathbb{E}[h(X,Y)1_A(X)]=
mathbb{E}[h(X,Y)1_{{Xin A}}]$$ for all $Ain mathcal{B}_{mathbb{R}^n}$.
add a comment |
up vote
1
down vote
accepted
Denote $X=(X_1,dots,X_n)sim mu$ and $Y=X_{n+1}sim nu$, then $X,Y$ are independent and $(X,Y)sim mu times nu$. Also,
$$ g(x)=int_{mathbb{R}}h(x,y)nu(dy) quad xin mathbb{R}^n.$$ Thus $$g(X)=mathbb{E}[h(X,Y)|X].$$
In fact, $g(X)$ is $sigma(X)$-measurable and
$$ mathbb{E}[g(X)1_{{Xin A}}]=
mathbb{E}[g(X)1_A(X)]= int_{mathbb{R}^n} g(x)1_A(x) mu(dx)=int_{mathbb{R}^n} left( int_{mathbb{R}} h(x,y)nu(dy)right)1_A(x)mu(dx) = int_{mathbb{R}^ntimes mathbb{R}} h(x,y)1_A(x)mutimes nu(dxtimes dy) = mathbb{E}[h(X,Y)1_A(X)]=
mathbb{E}[h(X,Y)1_{{Xin A}}]$$ for all $Ain mathcal{B}_{mathbb{R}^n}$.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Denote $X=(X_1,dots,X_n)sim mu$ and $Y=X_{n+1}sim nu$, then $X,Y$ are independent and $(X,Y)sim mu times nu$. Also,
$$ g(x)=int_{mathbb{R}}h(x,y)nu(dy) quad xin mathbb{R}^n.$$ Thus $$g(X)=mathbb{E}[h(X,Y)|X].$$
In fact, $g(X)$ is $sigma(X)$-measurable and
$$ mathbb{E}[g(X)1_{{Xin A}}]=
mathbb{E}[g(X)1_A(X)]= int_{mathbb{R}^n} g(x)1_A(x) mu(dx)=int_{mathbb{R}^n} left( int_{mathbb{R}} h(x,y)nu(dy)right)1_A(x)mu(dx) = int_{mathbb{R}^ntimes mathbb{R}} h(x,y)1_A(x)mutimes nu(dxtimes dy) = mathbb{E}[h(X,Y)1_A(X)]=
mathbb{E}[h(X,Y)1_{{Xin A}}]$$ for all $Ain mathcal{B}_{mathbb{R}^n}$.
Denote $X=(X_1,dots,X_n)sim mu$ and $Y=X_{n+1}sim nu$, then $X,Y$ are independent and $(X,Y)sim mu times nu$. Also,
$$ g(x)=int_{mathbb{R}}h(x,y)nu(dy) quad xin mathbb{R}^n.$$ Thus $$g(X)=mathbb{E}[h(X,Y)|X].$$
In fact, $g(X)$ is $sigma(X)$-measurable and
$$ mathbb{E}[g(X)1_{{Xin A}}]=
mathbb{E}[g(X)1_A(X)]= int_{mathbb{R}^n} g(x)1_A(x) mu(dx)=int_{mathbb{R}^n} left( int_{mathbb{R}} h(x,y)nu(dy)right)1_A(x)mu(dx) = int_{mathbb{R}^ntimes mathbb{R}} h(x,y)1_A(x)mutimes nu(dxtimes dy) = mathbb{E}[h(X,Y)1_A(X)]=
mathbb{E}[h(X,Y)1_{{Xin A}}]$$ for all $Ain mathcal{B}_{mathbb{R}^n}$.
edited yesterday
answered yesterday
Daniel Camarena Perez
54728
54728
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2992868%2fconditional-expectation-of-a-function-with-independent-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
There is no reason to use $P_{|G}$.
– d.k.o.
Nov 10 at 21:51
Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
– Eberhardt
Nov 11 at 11:41