Conditional expectation of a function with independent random variables











up vote
0
down vote

favorite












If $X_1, ..., X_{n+1}$ are independent real random variables and $h:mathbb{R}^{n+1} to mathbb{R}$ a Borel function. Now taking the conditional expectation $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$



Assuming $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ show that if
$g(x_1, ldots, x_n) = mathbb{E}[h(x_1, ldots, x_n, X_{n+1})]$ then
$g(X_1, ldots, X_n)$ is a version of $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$.



The claim would follow from the definition of conditional expectation, if we can show that
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = mathbb{E}[g(X_1, ldots, X_{n}) mathbf{1}_G], $$
for all $G in sigma(X_1, ldots, X_n)$.



What I tried so far is trying to expand the expectations and rewrite them with Fubini's theorem.



Assuming the underlying probability space is $(Omega, mathcal{F}, P)$.
I thought I could rewrite with a restricted push forward $P_{|G}^{X_i}(A) = P(X_i^{-1}(A) cap G)$ to get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_1, ldots, X_{n+1}} $$
All variables are $X_i$ independet so we can factor $dP_{|G}^{X_1, ldots, X_{n+1}} = d Pi_{i=1}^{n+1} P_{|G}^{X_i}$.



$$ = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) d Pi_{i=1}^{n+1} P_{|G}^{X_i} = int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1}in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=1}^{n} P_{|G}^{X_i} $$



Now $P_{|G}^{X_{n+1}}(A) = P(X_{n+1}^{-1}(A)cap G) = P(X_{n+1}^{-1}(A))P(G)$, since $sigma(X_{n+1})$ and $sigma(X_1,ldots, X_n)$ are independet. Since $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ Fubini applies and we get



$$ int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)int_{(x_1, ldots x_{n})in mathbb{R}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} $$
$$ = P(G) int_{(x_1, ldots x_{n}) in mathbb{R}^n} E[h(x_1, ldots, X_{n+1})] d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G) int_{(x_1, ldots x_{n})in mathbb{R}^n} g(x_1, ldots, x_n) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G]. $$



So I the end I get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G],$$ which is wrong according to the claim!



I can't spot my mistake. So is the claim really true and if so where do I mess up?










share|cite|improve this question
























  • There is no reason to use $P_{|G}$.
    – d.k.o.
    Nov 10 at 21:51












  • Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
    – Eberhardt
    Nov 11 at 11:41















up vote
0
down vote

favorite












If $X_1, ..., X_{n+1}$ are independent real random variables and $h:mathbb{R}^{n+1} to mathbb{R}$ a Borel function. Now taking the conditional expectation $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$



Assuming $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ show that if
$g(x_1, ldots, x_n) = mathbb{E}[h(x_1, ldots, x_n, X_{n+1})]$ then
$g(X_1, ldots, X_n)$ is a version of $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$.



The claim would follow from the definition of conditional expectation, if we can show that
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = mathbb{E}[g(X_1, ldots, X_{n}) mathbf{1}_G], $$
for all $G in sigma(X_1, ldots, X_n)$.



What I tried so far is trying to expand the expectations and rewrite them with Fubini's theorem.



Assuming the underlying probability space is $(Omega, mathcal{F}, P)$.
I thought I could rewrite with a restricted push forward $P_{|G}^{X_i}(A) = P(X_i^{-1}(A) cap G)$ to get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_1, ldots, X_{n+1}} $$
All variables are $X_i$ independet so we can factor $dP_{|G}^{X_1, ldots, X_{n+1}} = d Pi_{i=1}^{n+1} P_{|G}^{X_i}$.



$$ = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) d Pi_{i=1}^{n+1} P_{|G}^{X_i} = int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1}in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=1}^{n} P_{|G}^{X_i} $$



Now $P_{|G}^{X_{n+1}}(A) = P(X_{n+1}^{-1}(A)cap G) = P(X_{n+1}^{-1}(A))P(G)$, since $sigma(X_{n+1})$ and $sigma(X_1,ldots, X_n)$ are independet. Since $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ Fubini applies and we get



$$ int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)int_{(x_1, ldots x_{n})in mathbb{R}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} $$
$$ = P(G) int_{(x_1, ldots x_{n}) in mathbb{R}^n} E[h(x_1, ldots, X_{n+1})] d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G) int_{(x_1, ldots x_{n})in mathbb{R}^n} g(x_1, ldots, x_n) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G]. $$



So I the end I get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G],$$ which is wrong according to the claim!



I can't spot my mistake. So is the claim really true and if so where do I mess up?










share|cite|improve this question
























  • There is no reason to use $P_{|G}$.
    – d.k.o.
    Nov 10 at 21:51












  • Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
    – Eberhardt
    Nov 11 at 11:41













up vote
0
down vote

favorite









up vote
0
down vote

favorite











If $X_1, ..., X_{n+1}$ are independent real random variables and $h:mathbb{R}^{n+1} to mathbb{R}$ a Borel function. Now taking the conditional expectation $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$



Assuming $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ show that if
$g(x_1, ldots, x_n) = mathbb{E}[h(x_1, ldots, x_n, X_{n+1})]$ then
$g(X_1, ldots, X_n)$ is a version of $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$.



The claim would follow from the definition of conditional expectation, if we can show that
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = mathbb{E}[g(X_1, ldots, X_{n}) mathbf{1}_G], $$
for all $G in sigma(X_1, ldots, X_n)$.



What I tried so far is trying to expand the expectations and rewrite them with Fubini's theorem.



Assuming the underlying probability space is $(Omega, mathcal{F}, P)$.
I thought I could rewrite with a restricted push forward $P_{|G}^{X_i}(A) = P(X_i^{-1}(A) cap G)$ to get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_1, ldots, X_{n+1}} $$
All variables are $X_i$ independet so we can factor $dP_{|G}^{X_1, ldots, X_{n+1}} = d Pi_{i=1}^{n+1} P_{|G}^{X_i}$.



$$ = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) d Pi_{i=1}^{n+1} P_{|G}^{X_i} = int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1}in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=1}^{n} P_{|G}^{X_i} $$



Now $P_{|G}^{X_{n+1}}(A) = P(X_{n+1}^{-1}(A)cap G) = P(X_{n+1}^{-1}(A))P(G)$, since $sigma(X_{n+1})$ and $sigma(X_1,ldots, X_n)$ are independet. Since $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ Fubini applies and we get



$$ int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)int_{(x_1, ldots x_{n})in mathbb{R}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} $$
$$ = P(G) int_{(x_1, ldots x_{n}) in mathbb{R}^n} E[h(x_1, ldots, X_{n+1})] d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G) int_{(x_1, ldots x_{n})in mathbb{R}^n} g(x_1, ldots, x_n) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G]. $$



So I the end I get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G],$$ which is wrong according to the claim!



I can't spot my mistake. So is the claim really true and if so where do I mess up?










share|cite|improve this question















If $X_1, ..., X_{n+1}$ are independent real random variables and $h:mathbb{R}^{n+1} to mathbb{R}$ a Borel function. Now taking the conditional expectation $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$



Assuming $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ show that if
$g(x_1, ldots, x_n) = mathbb{E}[h(x_1, ldots, x_n, X_{n+1})]$ then
$g(X_1, ldots, X_n)$ is a version of $mathbb{E}[h(X_1, ldots, X_{n+1})| sigma(X_1, ldots, X_n)]$.



The claim would follow from the definition of conditional expectation, if we can show that
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = mathbb{E}[g(X_1, ldots, X_{n}) mathbf{1}_G], $$
for all $G in sigma(X_1, ldots, X_n)$.



What I tried so far is trying to expand the expectations and rewrite them with Fubini's theorem.



Assuming the underlying probability space is $(Omega, mathcal{F}, P)$.
I thought I could rewrite with a restricted push forward $P_{|G}^{X_i}(A) = P(X_i^{-1}(A) cap G)$ to get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_1, ldots, X_{n+1}} $$
All variables are $X_i$ independet so we can factor $dP_{|G}^{X_1, ldots, X_{n+1}} = d Pi_{i=1}^{n+1} P_{|G}^{X_i}$.



$$ = int_{(x_1, ldots x_{n+1})in mathbb{R}^{n+1}} h(x_1, ldots, x_{n+1}) d Pi_{i=1}^{n+1} P_{|G}^{X_i} = int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1}in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=1}^{n} P_{|G}^{X_i} $$



Now $P_{|G}^{X_{n+1}}(A) = P(X_{n+1}^{-1}(A)cap G) = P(X_{n+1}^{-1}(A))P(G)$, since $sigma(X_{n+1})$ and $sigma(X_1,ldots, X_n)$ are independet. Since $mathbb{E}[|h(X_1, ldots, X_{n+1})|] < infty $ Fubini applies and we get



$$ int_{(x_1, ldots x_{n})in mathbb{R}^{n}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP_{|G}^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)int_{(x_1, ldots x_{n})in mathbb{R}} left(int_{x_{n+1} in mathbb{R}} h(x_1, ldots, x_{n+1}) dP^{X_{n+1}} right) d Pi_{i=0}^{n} P_{|G}^{X_i} $$
$$ = P(G) int_{(x_1, ldots x_{n}) in mathbb{R}^n} E[h(x_1, ldots, X_{n+1})] d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G) int_{(x_1, ldots x_{n})in mathbb{R}^n} g(x_1, ldots, x_n) d Pi_{i=0}^{n} P_{|G}^{X_i} = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G]. $$



So I the end I get
$$ mathbb{E}[h(X_1, ldots, X_{n+1}) mathbf{1}_G] = P(G)mathbb{E}[g(X_1, ldots, X_n) mathbf{1}_G],$$ which is wrong according to the claim!



I can't spot my mistake. So is the claim really true and if so where do I mess up?







probability measure-theory conditional-expectation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 10 at 21:12

























asked Nov 10 at 17:25









Eberhardt

93116




93116












  • There is no reason to use $P_{|G}$.
    – d.k.o.
    Nov 10 at 21:51












  • Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
    – Eberhardt
    Nov 11 at 11:41


















  • There is no reason to use $P_{|G}$.
    – d.k.o.
    Nov 10 at 21:51












  • Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
    – Eberhardt
    Nov 11 at 11:41
















There is no reason to use $P_{|G}$.
– d.k.o.
Nov 10 at 21:51






There is no reason to use $P_{|G}$.
– d.k.o.
Nov 10 at 21:51














Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
– Eberhardt
Nov 11 at 11:41




Thank you @d.k.o. ! I realized my way of handling the indicator function $mathbf{1}_G$ in the expectation was not correct. Indeed digging a bit deeper I found the better way, described here math.stackexchange.com/a/1176339/15417 .
– Eberhardt
Nov 11 at 11:41










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










Denote $X=(X_1,dots,X_n)sim mu$ and $Y=X_{n+1}sim nu$, then $X,Y$ are independent and $(X,Y)sim mu times nu$. Also,
$$ g(x)=int_{mathbb{R}}h(x,y)nu(dy) quad xin mathbb{R}^n.$$ Thus $$g(X)=mathbb{E}[h(X,Y)|X].$$



In fact, $g(X)$ is $sigma(X)$-measurable and
$$ mathbb{E}[g(X)1_{{Xin A}}]=
mathbb{E}[g(X)1_A(X)]= int_{mathbb{R}^n} g(x)1_A(x) mu(dx)=int_{mathbb{R}^n} left( int_{mathbb{R}} h(x,y)nu(dy)right)1_A(x)mu(dx) = int_{mathbb{R}^ntimes mathbb{R}} h(x,y)1_A(x)mutimes nu(dxtimes dy) = mathbb{E}[h(X,Y)1_A(X)]=
mathbb{E}[h(X,Y)1_{{Xin A}}]$$
for all $Ain mathcal{B}_{mathbb{R}^n}$.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2992868%2fconditional-expectation-of-a-function-with-independent-random-variables%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    Denote $X=(X_1,dots,X_n)sim mu$ and $Y=X_{n+1}sim nu$, then $X,Y$ are independent and $(X,Y)sim mu times nu$. Also,
    $$ g(x)=int_{mathbb{R}}h(x,y)nu(dy) quad xin mathbb{R}^n.$$ Thus $$g(X)=mathbb{E}[h(X,Y)|X].$$



    In fact, $g(X)$ is $sigma(X)$-measurable and
    $$ mathbb{E}[g(X)1_{{Xin A}}]=
    mathbb{E}[g(X)1_A(X)]= int_{mathbb{R}^n} g(x)1_A(x) mu(dx)=int_{mathbb{R}^n} left( int_{mathbb{R}} h(x,y)nu(dy)right)1_A(x)mu(dx) = int_{mathbb{R}^ntimes mathbb{R}} h(x,y)1_A(x)mutimes nu(dxtimes dy) = mathbb{E}[h(X,Y)1_A(X)]=
    mathbb{E}[h(X,Y)1_{{Xin A}}]$$
    for all $Ain mathcal{B}_{mathbb{R}^n}$.






    share|cite|improve this answer



























      up vote
      1
      down vote



      accepted










      Denote $X=(X_1,dots,X_n)sim mu$ and $Y=X_{n+1}sim nu$, then $X,Y$ are independent and $(X,Y)sim mu times nu$. Also,
      $$ g(x)=int_{mathbb{R}}h(x,y)nu(dy) quad xin mathbb{R}^n.$$ Thus $$g(X)=mathbb{E}[h(X,Y)|X].$$



      In fact, $g(X)$ is $sigma(X)$-measurable and
      $$ mathbb{E}[g(X)1_{{Xin A}}]=
      mathbb{E}[g(X)1_A(X)]= int_{mathbb{R}^n} g(x)1_A(x) mu(dx)=int_{mathbb{R}^n} left( int_{mathbb{R}} h(x,y)nu(dy)right)1_A(x)mu(dx) = int_{mathbb{R}^ntimes mathbb{R}} h(x,y)1_A(x)mutimes nu(dxtimes dy) = mathbb{E}[h(X,Y)1_A(X)]=
      mathbb{E}[h(X,Y)1_{{Xin A}}]$$
      for all $Ain mathcal{B}_{mathbb{R}^n}$.






      share|cite|improve this answer

























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        Denote $X=(X_1,dots,X_n)sim mu$ and $Y=X_{n+1}sim nu$, then $X,Y$ are independent and $(X,Y)sim mu times nu$. Also,
        $$ g(x)=int_{mathbb{R}}h(x,y)nu(dy) quad xin mathbb{R}^n.$$ Thus $$g(X)=mathbb{E}[h(X,Y)|X].$$



        In fact, $g(X)$ is $sigma(X)$-measurable and
        $$ mathbb{E}[g(X)1_{{Xin A}}]=
        mathbb{E}[g(X)1_A(X)]= int_{mathbb{R}^n} g(x)1_A(x) mu(dx)=int_{mathbb{R}^n} left( int_{mathbb{R}} h(x,y)nu(dy)right)1_A(x)mu(dx) = int_{mathbb{R}^ntimes mathbb{R}} h(x,y)1_A(x)mutimes nu(dxtimes dy) = mathbb{E}[h(X,Y)1_A(X)]=
        mathbb{E}[h(X,Y)1_{{Xin A}}]$$
        for all $Ain mathcal{B}_{mathbb{R}^n}$.






        share|cite|improve this answer














        Denote $X=(X_1,dots,X_n)sim mu$ and $Y=X_{n+1}sim nu$, then $X,Y$ are independent and $(X,Y)sim mu times nu$. Also,
        $$ g(x)=int_{mathbb{R}}h(x,y)nu(dy) quad xin mathbb{R}^n.$$ Thus $$g(X)=mathbb{E}[h(X,Y)|X].$$



        In fact, $g(X)$ is $sigma(X)$-measurable and
        $$ mathbb{E}[g(X)1_{{Xin A}}]=
        mathbb{E}[g(X)1_A(X)]= int_{mathbb{R}^n} g(x)1_A(x) mu(dx)=int_{mathbb{R}^n} left( int_{mathbb{R}} h(x,y)nu(dy)right)1_A(x)mu(dx) = int_{mathbb{R}^ntimes mathbb{R}} h(x,y)1_A(x)mutimes nu(dxtimes dy) = mathbb{E}[h(X,Y)1_A(X)]=
        mathbb{E}[h(X,Y)1_{{Xin A}}]$$
        for all $Ain mathcal{B}_{mathbb{R}^n}$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited yesterday

























        answered yesterday









        Daniel Camarena Perez

        54728




        54728






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2992868%2fconditional-expectation-of-a-function-with-independent-random-variables%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa