find $k^2$ if $left| asin^2 theta+bsin theta cos theta+ccos^2 theta-frac{(a+c)}{2} right|=frac{k}{2}$











up vote
1
down vote

favorite
1













If $
left|
asin^2theta+bsinthetacostheta+ccos^2theta-dfrac{(a+c)}{2}
right|=dfrac{k}{2}$
, then find $k^2.$




My Attempt
begin{align}
pm k &= 2asin^2 theta+2bsin theta cos theta+2ccos^2 theta-(a+c) \
&= a[1-cos 2theta]+bsin 2theta+c[1+cos 2theta]-(a+c) \
&= aleft[ 1-frac{1-tan^2 theta}{1+tan^2 theta} right]+
bfrac{2tan theta}{1+tan^2 theta}+
cleft[ 1+frac{1-tan^2 theta}{1+tan^2 theta} right]-(a+c)\
pm k[1+tan^2 theta] &=
2atan^2 theta+2btan theta+2c-(a+c)[1+tan^2 theta] \
0 &= tan^2 theta [a-cmp k]+2btan theta+(c-amp k) \
Delta &= 4b^2-4(a-cmp k)(c-amp k) \
&= 4b^2-4[mp k+(a-c)][mp k-(a-c)] \
&= 4b^2-4[k^2-(a-c)^2] \
& ge 0 \
b^2+(a-c)^2 & ge k^2
end{align}



How do I prove that $k^2=b^2+(a-c)^2$ ?










share|cite|improve this question




















  • 1




    $$2asin^2t+2bsin tcos t+2ccos^2t-(a+c)=cos2t(c-a)+bsin2tlesqrt{b^2+(c-a)^ 2}$$ I think you need minimum value of $k$
    – lab bhattacharjee
    8 hours ago










  • You can not prove $k^2=b^2+(a-c)^2$, because for $theta = 0$, $k^2=(c-a)^2$.
    – farruhota
    5 hours ago

















up vote
1
down vote

favorite
1













If $
left|
asin^2theta+bsinthetacostheta+ccos^2theta-dfrac{(a+c)}{2}
right|=dfrac{k}{2}$
, then find $k^2.$




My Attempt
begin{align}
pm k &= 2asin^2 theta+2bsin theta cos theta+2ccos^2 theta-(a+c) \
&= a[1-cos 2theta]+bsin 2theta+c[1+cos 2theta]-(a+c) \
&= aleft[ 1-frac{1-tan^2 theta}{1+tan^2 theta} right]+
bfrac{2tan theta}{1+tan^2 theta}+
cleft[ 1+frac{1-tan^2 theta}{1+tan^2 theta} right]-(a+c)\
pm k[1+tan^2 theta] &=
2atan^2 theta+2btan theta+2c-(a+c)[1+tan^2 theta] \
0 &= tan^2 theta [a-cmp k]+2btan theta+(c-amp k) \
Delta &= 4b^2-4(a-cmp k)(c-amp k) \
&= 4b^2-4[mp k+(a-c)][mp k-(a-c)] \
&= 4b^2-4[k^2-(a-c)^2] \
& ge 0 \
b^2+(a-c)^2 & ge k^2
end{align}



How do I prove that $k^2=b^2+(a-c)^2$ ?










share|cite|improve this question




















  • 1




    $$2asin^2t+2bsin tcos t+2ccos^2t-(a+c)=cos2t(c-a)+bsin2tlesqrt{b^2+(c-a)^ 2}$$ I think you need minimum value of $k$
    – lab bhattacharjee
    8 hours ago










  • You can not prove $k^2=b^2+(a-c)^2$, because for $theta = 0$, $k^2=(c-a)^2$.
    – farruhota
    5 hours ago















up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1






If $
left|
asin^2theta+bsinthetacostheta+ccos^2theta-dfrac{(a+c)}{2}
right|=dfrac{k}{2}$
, then find $k^2.$




My Attempt
begin{align}
pm k &= 2asin^2 theta+2bsin theta cos theta+2ccos^2 theta-(a+c) \
&= a[1-cos 2theta]+bsin 2theta+c[1+cos 2theta]-(a+c) \
&= aleft[ 1-frac{1-tan^2 theta}{1+tan^2 theta} right]+
bfrac{2tan theta}{1+tan^2 theta}+
cleft[ 1+frac{1-tan^2 theta}{1+tan^2 theta} right]-(a+c)\
pm k[1+tan^2 theta] &=
2atan^2 theta+2btan theta+2c-(a+c)[1+tan^2 theta] \
0 &= tan^2 theta [a-cmp k]+2btan theta+(c-amp k) \
Delta &= 4b^2-4(a-cmp k)(c-amp k) \
&= 4b^2-4[mp k+(a-c)][mp k-(a-c)] \
&= 4b^2-4[k^2-(a-c)^2] \
& ge 0 \
b^2+(a-c)^2 & ge k^2
end{align}



How do I prove that $k^2=b^2+(a-c)^2$ ?










share|cite|improve this question
















If $
left|
asin^2theta+bsinthetacostheta+ccos^2theta-dfrac{(a+c)}{2}
right|=dfrac{k}{2}$
, then find $k^2.$




My Attempt
begin{align}
pm k &= 2asin^2 theta+2bsin theta cos theta+2ccos^2 theta-(a+c) \
&= a[1-cos 2theta]+bsin 2theta+c[1+cos 2theta]-(a+c) \
&= aleft[ 1-frac{1-tan^2 theta}{1+tan^2 theta} right]+
bfrac{2tan theta}{1+tan^2 theta}+
cleft[ 1+frac{1-tan^2 theta}{1+tan^2 theta} right]-(a+c)\
pm k[1+tan^2 theta] &=
2atan^2 theta+2btan theta+2c-(a+c)[1+tan^2 theta] \
0 &= tan^2 theta [a-cmp k]+2btan theta+(c-amp k) \
Delta &= 4b^2-4(a-cmp k)(c-amp k) \
&= 4b^2-4[mp k+(a-c)][mp k-(a-c)] \
&= 4b^2-4[k^2-(a-c)^2] \
& ge 0 \
b^2+(a-c)^2 & ge k^2
end{align}



How do I prove that $k^2=b^2+(a-c)^2$ ?







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 7 hours ago









Ng Chung Tak

13.5k31234




13.5k31234










asked 8 hours ago









ss1729

1,613722




1,613722








  • 1




    $$2asin^2t+2bsin tcos t+2ccos^2t-(a+c)=cos2t(c-a)+bsin2tlesqrt{b^2+(c-a)^ 2}$$ I think you need minimum value of $k$
    – lab bhattacharjee
    8 hours ago










  • You can not prove $k^2=b^2+(a-c)^2$, because for $theta = 0$, $k^2=(c-a)^2$.
    – farruhota
    5 hours ago
















  • 1




    $$2asin^2t+2bsin tcos t+2ccos^2t-(a+c)=cos2t(c-a)+bsin2tlesqrt{b^2+(c-a)^ 2}$$ I think you need minimum value of $k$
    – lab bhattacharjee
    8 hours ago










  • You can not prove $k^2=b^2+(a-c)^2$, because for $theta = 0$, $k^2=(c-a)^2$.
    – farruhota
    5 hours ago










1




1




$$2asin^2t+2bsin tcos t+2ccos^2t-(a+c)=cos2t(c-a)+bsin2tlesqrt{b^2+(c-a)^ 2}$$ I think you need minimum value of $k$
– lab bhattacharjee
8 hours ago




$$2asin^2t+2bsin tcos t+2ccos^2t-(a+c)=cos2t(c-a)+bsin2tlesqrt{b^2+(c-a)^ 2}$$ I think you need minimum value of $k$
– lab bhattacharjee
8 hours ago












You can not prove $k^2=b^2+(a-c)^2$, because for $theta = 0$, $k^2=(c-a)^2$.
– farruhota
5 hours ago






You can not prove $k^2=b^2+(a-c)^2$, because for $theta = 0$, $k^2=(c-a)^2$.
– farruhota
5 hours ago

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997914%2ffind-k2-if-left-a-sin2-thetab-sin-theta-cos-thetac-cos2-theta-fr%23new-answer', 'question_page');
}
);

Post as a guest





































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997914%2ffind-k2-if-left-a-sin2-thetab-sin-theta-cos-thetac-cos2-theta-fr%23new-answer', 'question_page');
}
);

Post as a guest




















































































Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa