Law of Iterated Logarithm when the mean does not exist
up vote
1
down vote
favorite
Let $X_1,X_2,ldots$ be an i.i.d. sequence of random variables such that $X_1geq 0$ a.s. and $mathbb P[X_1>x]sim x^{-alpha}$, where $alpha<2$. This implies that $X_1$ does not have finite mean. Does the following law of iterated logarithm hold?
$$
limsup_{ntoinfty} frac{X_1+cdots+X_n}{n^{alpha}(loglog n)^{1-alpha}}=1,quad text{a.s.}
$$
A continuous-time version holds (see here). Also, a special case of the claim exists here (Theorem 3) regarding zeros of the simple random walk, in which $alpha=frac 12$.
probability-theory probability-limit-theorems
add a comment |
up vote
1
down vote
favorite
Let $X_1,X_2,ldots$ be an i.i.d. sequence of random variables such that $X_1geq 0$ a.s. and $mathbb P[X_1>x]sim x^{-alpha}$, where $alpha<2$. This implies that $X_1$ does not have finite mean. Does the following law of iterated logarithm hold?
$$
limsup_{ntoinfty} frac{X_1+cdots+X_n}{n^{alpha}(loglog n)^{1-alpha}}=1,quad text{a.s.}
$$
A continuous-time version holds (see here). Also, a special case of the claim exists here (Theorem 3) regarding zeros of the simple random walk, in which $alpha=frac 12$.
probability-theory probability-limit-theorems
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $X_1,X_2,ldots$ be an i.i.d. sequence of random variables such that $X_1geq 0$ a.s. and $mathbb P[X_1>x]sim x^{-alpha}$, where $alpha<2$. This implies that $X_1$ does not have finite mean. Does the following law of iterated logarithm hold?
$$
limsup_{ntoinfty} frac{X_1+cdots+X_n}{n^{alpha}(loglog n)^{1-alpha}}=1,quad text{a.s.}
$$
A continuous-time version holds (see here). Also, a special case of the claim exists here (Theorem 3) regarding zeros of the simple random walk, in which $alpha=frac 12$.
probability-theory probability-limit-theorems
Let $X_1,X_2,ldots$ be an i.i.d. sequence of random variables such that $X_1geq 0$ a.s. and $mathbb P[X_1>x]sim x^{-alpha}$, where $alpha<2$. This implies that $X_1$ does not have finite mean. Does the following law of iterated logarithm hold?
$$
limsup_{ntoinfty} frac{X_1+cdots+X_n}{n^{alpha}(loglog n)^{1-alpha}}=1,quad text{a.s.}
$$
A continuous-time version holds (see here). Also, a special case of the claim exists here (Theorem 3) regarding zeros of the simple random walk, in which $alpha=frac 12$.
probability-theory probability-limit-theorems
probability-theory probability-limit-theorems
asked yesterday
Ali Khezeli
41327
41327
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997853%2flaw-of-iterated-logarithm-when-the-mean-does-not-exist%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown