Behavior of the solution of the eikonal equation
$begingroup$
Consider the nonlinear first-order initial-value problem: $$(u_t )^2 + (u_x )^2 = 1$$ with initial condition $u(x, 0) = {−sqrt{1+x^2}}$. Find its solution for all $t>0$ using the method of characteristics.
Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$
$$F(p,z,x)=p_1^2+p_2^2-1, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=0, frac{dF}{dx}=langle 0,0 rangle $$
Characteristics:
begin{align}
p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -0langle p_1,p_2 rangle=langle 0,0 rangle \
z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2=2\
x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
end{align}
IVP:
$$ x_0 =r quad t_0 =0, quad u_0=z_0={−sqrt{1+r^2}} $$
$$ u_x(x,0) = -frac{x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{r}{{sqrt{1+r^2}}}=p_1 $$
$$ p_{1_0}^2+p_{2_0}^2-1 = 0 implies p_{2_0}=pm sqrt{1-frac{r^2}{1+r^2}}=pm frac{1}{{sqrt{1+r^2}}}=p_2$$
Suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$, then $t_s=2p_2=frac{2}{{sqrt{1+r^2}}}$ with $t_0 =0 implies t = frac{2}{{sqrt{1+r^2}}}s implies s=frac{t{sqrt{1+r^2}}}{2}$
$$x_s = 2p_1 = -frac{2r}{{sqrt{1+r^2}}}$$ with $x_0 =r$ implies $$x=-frac{2r}{{sqrt{1+r^2}}}s+r=-tr+r=r(1-t) implies r =frac{x}{1-t}.$$
$z_s=2$ with $z_0={−sqrt{1+r^2}} $ implies $$z=u(x,t)=2s{−sqrt{1+r^2}}=tsqrt{1+r^2}-sqrt{1+r^2}=sqrt{1+r^2}(t-1)=sqrt{1+frac{x^2}{(1-t)^2}}(t-1)=sqrt{(1-t)^2+x^2},$$ but this solution doesn't satisfy the IVP. This seems bizarre to me, since I parametrize the variables to fit the initial conditions. How can this be?
pde characteristics
$endgroup$
add a comment |
$begingroup$
Consider the nonlinear first-order initial-value problem: $$(u_t )^2 + (u_x )^2 = 1$$ with initial condition $u(x, 0) = {−sqrt{1+x^2}}$. Find its solution for all $t>0$ using the method of characteristics.
Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$
$$F(p,z,x)=p_1^2+p_2^2-1, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=0, frac{dF}{dx}=langle 0,0 rangle $$
Characteristics:
begin{align}
p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -0langle p_1,p_2 rangle=langle 0,0 rangle \
z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2=2\
x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
end{align}
IVP:
$$ x_0 =r quad t_0 =0, quad u_0=z_0={−sqrt{1+r^2}} $$
$$ u_x(x,0) = -frac{x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{r}{{sqrt{1+r^2}}}=p_1 $$
$$ p_{1_0}^2+p_{2_0}^2-1 = 0 implies p_{2_0}=pm sqrt{1-frac{r^2}{1+r^2}}=pm frac{1}{{sqrt{1+r^2}}}=p_2$$
Suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$, then $t_s=2p_2=frac{2}{{sqrt{1+r^2}}}$ with $t_0 =0 implies t = frac{2}{{sqrt{1+r^2}}}s implies s=frac{t{sqrt{1+r^2}}}{2}$
$$x_s = 2p_1 = -frac{2r}{{sqrt{1+r^2}}}$$ with $x_0 =r$ implies $$x=-frac{2r}{{sqrt{1+r^2}}}s+r=-tr+r=r(1-t) implies r =frac{x}{1-t}.$$
$z_s=2$ with $z_0={−sqrt{1+r^2}} $ implies $$z=u(x,t)=2s{−sqrt{1+r^2}}=tsqrt{1+r^2}-sqrt{1+r^2}=sqrt{1+r^2}(t-1)=sqrt{1+frac{x^2}{(1-t)^2}}(t-1)=sqrt{(1-t)^2+x^2},$$ but this solution doesn't satisfy the IVP. This seems bizarre to me, since I parametrize the variables to fit the initial conditions. How can this be?
pde characteristics
$endgroup$
add a comment |
$begingroup$
Consider the nonlinear first-order initial-value problem: $$(u_t )^2 + (u_x )^2 = 1$$ with initial condition $u(x, 0) = {−sqrt{1+x^2}}$. Find its solution for all $t>0$ using the method of characteristics.
Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$
$$F(p,z,x)=p_1^2+p_2^2-1, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=0, frac{dF}{dx}=langle 0,0 rangle $$
Characteristics:
begin{align}
p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -0langle p_1,p_2 rangle=langle 0,0 rangle \
z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2=2\
x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
end{align}
IVP:
$$ x_0 =r quad t_0 =0, quad u_0=z_0={−sqrt{1+r^2}} $$
$$ u_x(x,0) = -frac{x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{r}{{sqrt{1+r^2}}}=p_1 $$
$$ p_{1_0}^2+p_{2_0}^2-1 = 0 implies p_{2_0}=pm sqrt{1-frac{r^2}{1+r^2}}=pm frac{1}{{sqrt{1+r^2}}}=p_2$$
Suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$, then $t_s=2p_2=frac{2}{{sqrt{1+r^2}}}$ with $t_0 =0 implies t = frac{2}{{sqrt{1+r^2}}}s implies s=frac{t{sqrt{1+r^2}}}{2}$
$$x_s = 2p_1 = -frac{2r}{{sqrt{1+r^2}}}$$ with $x_0 =r$ implies $$x=-frac{2r}{{sqrt{1+r^2}}}s+r=-tr+r=r(1-t) implies r =frac{x}{1-t}.$$
$z_s=2$ with $z_0={−sqrt{1+r^2}} $ implies $$z=u(x,t)=2s{−sqrt{1+r^2}}=tsqrt{1+r^2}-sqrt{1+r^2}=sqrt{1+r^2}(t-1)=sqrt{1+frac{x^2}{(1-t)^2}}(t-1)=sqrt{(1-t)^2+x^2},$$ but this solution doesn't satisfy the IVP. This seems bizarre to me, since I parametrize the variables to fit the initial conditions. How can this be?
pde characteristics
$endgroup$
Consider the nonlinear first-order initial-value problem: $$(u_t )^2 + (u_x )^2 = 1$$ with initial condition $u(x, 0) = {−sqrt{1+x^2}}$. Find its solution for all $t>0$ using the method of characteristics.
Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$
$$F(p,z,x)=p_1^2+p_2^2-1, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=0, frac{dF}{dx}=langle 0,0 rangle $$
Characteristics:
begin{align}
p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -0langle p_1,p_2 rangle=langle 0,0 rangle \
z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2=2\
x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
end{align}
IVP:
$$ x_0 =r quad t_0 =0, quad u_0=z_0={−sqrt{1+r^2}} $$
$$ u_x(x,0) = -frac{x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{r}{{sqrt{1+r^2}}}=p_1 $$
$$ p_{1_0}^2+p_{2_0}^2-1 = 0 implies p_{2_0}=pm sqrt{1-frac{r^2}{1+r^2}}=pm frac{1}{{sqrt{1+r^2}}}=p_2$$
Suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$, then $t_s=2p_2=frac{2}{{sqrt{1+r^2}}}$ with $t_0 =0 implies t = frac{2}{{sqrt{1+r^2}}}s implies s=frac{t{sqrt{1+r^2}}}{2}$
$$x_s = 2p_1 = -frac{2r}{{sqrt{1+r^2}}}$$ with $x_0 =r$ implies $$x=-frac{2r}{{sqrt{1+r^2}}}s+r=-tr+r=r(1-t) implies r =frac{x}{1-t}.$$
$z_s=2$ with $z_0={−sqrt{1+r^2}} $ implies $$z=u(x,t)=2s{−sqrt{1+r^2}}=tsqrt{1+r^2}-sqrt{1+r^2}=sqrt{1+r^2}(t-1)=sqrt{1+frac{x^2}{(1-t)^2}}(t-1)=sqrt{(1-t)^2+x^2},$$ but this solution doesn't satisfy the IVP. This seems bizarre to me, since I parametrize the variables to fit the initial conditions. How can this be?
pde characteristics
pde characteristics
asked Dec 11 '18 at 1:02
dxdydzdxdydz
37110
37110
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You found $p_{2_0}=pm frac{1}{{sqrt{1+r^2}}}$
Why do you suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$ instead of $p_{2_0}=-frac{1}{{sqrt{1+r^2}}}$ ?
One have to examine the both cases and chose which one agrees to the boundary condition.
The supposition with sign $+$ leads to $z=sqrt{(1-t)^2+x^2}$ which doesn't agrees with $z_0=-sqrt{1+x^2}$.
The supposition with sign $-$ leads to $z=-sqrt{(1-t)^2+x^2}$ which agrees with $z_0=-sqrt{1+x^2}$.
Thus the solution is :
$$u(x,t)=-sqrt{(1-t)^2+x^2}$$
$u_x=-frac{x}{sqrt{(1-t)^2+x^2}}$
$u_t=-frac{-(1-t)}{sqrt{(1-t)^2+x^2}}$
$(u_x)^2+(u_t)^2=frac{x^2}{(1-t)^2+x^2}+frac{(1-t)^2}{(1-t)^2+x^2}=frac{x^2+(1-t)^2}{(1-t)^2+x^2}$
$$(u_x)^2+(u_t)^2=1$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034723%2fbehavior-of-the-solution-of-the-eikonal-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You found $p_{2_0}=pm frac{1}{{sqrt{1+r^2}}}$
Why do you suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$ instead of $p_{2_0}=-frac{1}{{sqrt{1+r^2}}}$ ?
One have to examine the both cases and chose which one agrees to the boundary condition.
The supposition with sign $+$ leads to $z=sqrt{(1-t)^2+x^2}$ which doesn't agrees with $z_0=-sqrt{1+x^2}$.
The supposition with sign $-$ leads to $z=-sqrt{(1-t)^2+x^2}$ which agrees with $z_0=-sqrt{1+x^2}$.
Thus the solution is :
$$u(x,t)=-sqrt{(1-t)^2+x^2}$$
$u_x=-frac{x}{sqrt{(1-t)^2+x^2}}$
$u_t=-frac{-(1-t)}{sqrt{(1-t)^2+x^2}}$
$(u_x)^2+(u_t)^2=frac{x^2}{(1-t)^2+x^2}+frac{(1-t)^2}{(1-t)^2+x^2}=frac{x^2+(1-t)^2}{(1-t)^2+x^2}$
$$(u_x)^2+(u_t)^2=1$$
$endgroup$
add a comment |
$begingroup$
You found $p_{2_0}=pm frac{1}{{sqrt{1+r^2}}}$
Why do you suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$ instead of $p_{2_0}=-frac{1}{{sqrt{1+r^2}}}$ ?
One have to examine the both cases and chose which one agrees to the boundary condition.
The supposition with sign $+$ leads to $z=sqrt{(1-t)^2+x^2}$ which doesn't agrees with $z_0=-sqrt{1+x^2}$.
The supposition with sign $-$ leads to $z=-sqrt{(1-t)^2+x^2}$ which agrees with $z_0=-sqrt{1+x^2}$.
Thus the solution is :
$$u(x,t)=-sqrt{(1-t)^2+x^2}$$
$u_x=-frac{x}{sqrt{(1-t)^2+x^2}}$
$u_t=-frac{-(1-t)}{sqrt{(1-t)^2+x^2}}$
$(u_x)^2+(u_t)^2=frac{x^2}{(1-t)^2+x^2}+frac{(1-t)^2}{(1-t)^2+x^2}=frac{x^2+(1-t)^2}{(1-t)^2+x^2}$
$$(u_x)^2+(u_t)^2=1$$
$endgroup$
add a comment |
$begingroup$
You found $p_{2_0}=pm frac{1}{{sqrt{1+r^2}}}$
Why do you suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$ instead of $p_{2_0}=-frac{1}{{sqrt{1+r^2}}}$ ?
One have to examine the both cases and chose which one agrees to the boundary condition.
The supposition with sign $+$ leads to $z=sqrt{(1-t)^2+x^2}$ which doesn't agrees with $z_0=-sqrt{1+x^2}$.
The supposition with sign $-$ leads to $z=-sqrt{(1-t)^2+x^2}$ which agrees with $z_0=-sqrt{1+x^2}$.
Thus the solution is :
$$u(x,t)=-sqrt{(1-t)^2+x^2}$$
$u_x=-frac{x}{sqrt{(1-t)^2+x^2}}$
$u_t=-frac{-(1-t)}{sqrt{(1-t)^2+x^2}}$
$(u_x)^2+(u_t)^2=frac{x^2}{(1-t)^2+x^2}+frac{(1-t)^2}{(1-t)^2+x^2}=frac{x^2+(1-t)^2}{(1-t)^2+x^2}$
$$(u_x)^2+(u_t)^2=1$$
$endgroup$
You found $p_{2_0}=pm frac{1}{{sqrt{1+r^2}}}$
Why do you suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$ instead of $p_{2_0}=-frac{1}{{sqrt{1+r^2}}}$ ?
One have to examine the both cases and chose which one agrees to the boundary condition.
The supposition with sign $+$ leads to $z=sqrt{(1-t)^2+x^2}$ which doesn't agrees with $z_0=-sqrt{1+x^2}$.
The supposition with sign $-$ leads to $z=-sqrt{(1-t)^2+x^2}$ which agrees with $z_0=-sqrt{1+x^2}$.
Thus the solution is :
$$u(x,t)=-sqrt{(1-t)^2+x^2}$$
$u_x=-frac{x}{sqrt{(1-t)^2+x^2}}$
$u_t=-frac{-(1-t)}{sqrt{(1-t)^2+x^2}}$
$(u_x)^2+(u_t)^2=frac{x^2}{(1-t)^2+x^2}+frac{(1-t)^2}{(1-t)^2+x^2}=frac{x^2+(1-t)^2}{(1-t)^2+x^2}$
$$(u_x)^2+(u_t)^2=1$$
edited Dec 11 '18 at 6:59
answered Dec 11 '18 at 6:54
JJacquelinJJacquelin
44.1k21853
44.1k21853
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034723%2fbehavior-of-the-solution-of-the-eikonal-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown