Behavior of the solution of the eikonal equation












0












$begingroup$



Consider the nonlinear first-order initial-value problem: $$(u_t )^2 + (u_x )^2 = 1$$ with initial condition $u(x, 0) = {−sqrt{1+x^2}}$. Find its solution for all $t>0$ using the method of characteristics.




Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$



$$F(p,z,x)=p_1^2+p_2^2-1, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=0, frac{dF}{dx}=langle 0,0 rangle $$



Characteristics:



begin{align}
p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -0langle p_1,p_2 rangle=langle 0,0 rangle \
z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2=2\
x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
end{align}



IVP:



$$ x_0 =r quad t_0 =0, quad u_0=z_0={−sqrt{1+r^2}} $$



$$ u_x(x,0) = -frac{x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{r}{{sqrt{1+r^2}}}=p_1 $$



$$ p_{1_0}^2+p_{2_0}^2-1 = 0 implies p_{2_0}=pm sqrt{1-frac{r^2}{1+r^2}}=pm frac{1}{{sqrt{1+r^2}}}=p_2$$



Suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$, then $t_s=2p_2=frac{2}{{sqrt{1+r^2}}}$ with $t_0 =0 implies t = frac{2}{{sqrt{1+r^2}}}s implies s=frac{t{sqrt{1+r^2}}}{2}$



$$x_s = 2p_1 = -frac{2r}{{sqrt{1+r^2}}}$$ with $x_0 =r$ implies $$x=-frac{2r}{{sqrt{1+r^2}}}s+r=-tr+r=r(1-t) implies r =frac{x}{1-t}.$$



$z_s=2$ with $z_0={−sqrt{1+r^2}} $ implies $$z=u(x,t)=2s{−sqrt{1+r^2}}=tsqrt{1+r^2}-sqrt{1+r^2}=sqrt{1+r^2}(t-1)=sqrt{1+frac{x^2}{(1-t)^2}}(t-1)=sqrt{(1-t)^2+x^2},$$ but this solution doesn't satisfy the IVP. This seems bizarre to me, since I parametrize the variables to fit the initial conditions. How can this be?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$



    Consider the nonlinear first-order initial-value problem: $$(u_t )^2 + (u_x )^2 = 1$$ with initial condition $u(x, 0) = {−sqrt{1+x^2}}$. Find its solution for all $t>0$ using the method of characteristics.




    Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$



    $$F(p,z,x)=p_1^2+p_2^2-1, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=0, frac{dF}{dx}=langle 0,0 rangle $$



    Characteristics:



    begin{align}
    p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -0langle p_1,p_2 rangle=langle 0,0 rangle \
    z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2=2\
    x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
    end{align}



    IVP:



    $$ x_0 =r quad t_0 =0, quad u_0=z_0={−sqrt{1+r^2}} $$



    $$ u_x(x,0) = -frac{x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{r}{{sqrt{1+r^2}}}=p_1 $$



    $$ p_{1_0}^2+p_{2_0}^2-1 = 0 implies p_{2_0}=pm sqrt{1-frac{r^2}{1+r^2}}=pm frac{1}{{sqrt{1+r^2}}}=p_2$$



    Suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$, then $t_s=2p_2=frac{2}{{sqrt{1+r^2}}}$ with $t_0 =0 implies t = frac{2}{{sqrt{1+r^2}}}s implies s=frac{t{sqrt{1+r^2}}}{2}$



    $$x_s = 2p_1 = -frac{2r}{{sqrt{1+r^2}}}$$ with $x_0 =r$ implies $$x=-frac{2r}{{sqrt{1+r^2}}}s+r=-tr+r=r(1-t) implies r =frac{x}{1-t}.$$



    $z_s=2$ with $z_0={−sqrt{1+r^2}} $ implies $$z=u(x,t)=2s{−sqrt{1+r^2}}=tsqrt{1+r^2}-sqrt{1+r^2}=sqrt{1+r^2}(t-1)=sqrt{1+frac{x^2}{(1-t)^2}}(t-1)=sqrt{(1-t)^2+x^2},$$ but this solution doesn't satisfy the IVP. This seems bizarre to me, since I parametrize the variables to fit the initial conditions. How can this be?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$



      Consider the nonlinear first-order initial-value problem: $$(u_t )^2 + (u_x )^2 = 1$$ with initial condition $u(x, 0) = {−sqrt{1+x^2}}$. Find its solution for all $t>0$ using the method of characteristics.




      Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$



      $$F(p,z,x)=p_1^2+p_2^2-1, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=0, frac{dF}{dx}=langle 0,0 rangle $$



      Characteristics:



      begin{align}
      p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -0langle p_1,p_2 rangle=langle 0,0 rangle \
      z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2=2\
      x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
      end{align}



      IVP:



      $$ x_0 =r quad t_0 =0, quad u_0=z_0={−sqrt{1+r^2}} $$



      $$ u_x(x,0) = -frac{x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{r}{{sqrt{1+r^2}}}=p_1 $$



      $$ p_{1_0}^2+p_{2_0}^2-1 = 0 implies p_{2_0}=pm sqrt{1-frac{r^2}{1+r^2}}=pm frac{1}{{sqrt{1+r^2}}}=p_2$$



      Suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$, then $t_s=2p_2=frac{2}{{sqrt{1+r^2}}}$ with $t_0 =0 implies t = frac{2}{{sqrt{1+r^2}}}s implies s=frac{t{sqrt{1+r^2}}}{2}$



      $$x_s = 2p_1 = -frac{2r}{{sqrt{1+r^2}}}$$ with $x_0 =r$ implies $$x=-frac{2r}{{sqrt{1+r^2}}}s+r=-tr+r=r(1-t) implies r =frac{x}{1-t}.$$



      $z_s=2$ with $z_0={−sqrt{1+r^2}} $ implies $$z=u(x,t)=2s{−sqrt{1+r^2}}=tsqrt{1+r^2}-sqrt{1+r^2}=sqrt{1+r^2}(t-1)=sqrt{1+frac{x^2}{(1-t)^2}}(t-1)=sqrt{(1-t)^2+x^2},$$ but this solution doesn't satisfy the IVP. This seems bizarre to me, since I parametrize the variables to fit the initial conditions. How can this be?










      share|cite|improve this question









      $endgroup$





      Consider the nonlinear first-order initial-value problem: $$(u_t )^2 + (u_x )^2 = 1$$ with initial condition $u(x, 0) = {−sqrt{1+x^2}}$. Find its solution for all $t>0$ using the method of characteristics.




      Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$



      $$F(p,z,x)=p_1^2+p_2^2-1, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=0, frac{dF}{dx}=langle 0,0 rangle $$



      Characteristics:



      begin{align}
      p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -0langle p_1,p_2 rangle=langle 0,0 rangle \
      z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2=2\
      x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
      end{align}



      IVP:



      $$ x_0 =r quad t_0 =0, quad u_0=z_0={−sqrt{1+r^2}} $$



      $$ u_x(x,0) = -frac{x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{r}{{sqrt{1+r^2}}}=p_1 $$



      $$ p_{1_0}^2+p_{2_0}^2-1 = 0 implies p_{2_0}=pm sqrt{1-frac{r^2}{1+r^2}}=pm frac{1}{{sqrt{1+r^2}}}=p_2$$



      Suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$, then $t_s=2p_2=frac{2}{{sqrt{1+r^2}}}$ with $t_0 =0 implies t = frac{2}{{sqrt{1+r^2}}}s implies s=frac{t{sqrt{1+r^2}}}{2}$



      $$x_s = 2p_1 = -frac{2r}{{sqrt{1+r^2}}}$$ with $x_0 =r$ implies $$x=-frac{2r}{{sqrt{1+r^2}}}s+r=-tr+r=r(1-t) implies r =frac{x}{1-t}.$$



      $z_s=2$ with $z_0={−sqrt{1+r^2}} $ implies $$z=u(x,t)=2s{−sqrt{1+r^2}}=tsqrt{1+r^2}-sqrt{1+r^2}=sqrt{1+r^2}(t-1)=sqrt{1+frac{x^2}{(1-t)^2}}(t-1)=sqrt{(1-t)^2+x^2},$$ but this solution doesn't satisfy the IVP. This seems bizarre to me, since I parametrize the variables to fit the initial conditions. How can this be?







      pde characteristics






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 11 '18 at 1:02









      dxdydzdxdydz

      37110




      37110






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          You found $p_{2_0}=pm frac{1}{{sqrt{1+r^2}}}$



          Why do you suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$ instead of $p_{2_0}=-frac{1}{{sqrt{1+r^2}}}$ ?



          One have to examine the both cases and chose which one agrees to the boundary condition.



          The supposition with sign $+$ leads to $z=sqrt{(1-t)^2+x^2}$ which doesn't agrees with $z_0=-sqrt{1+x^2}$.



          The supposition with sign $-$ leads to $z=-sqrt{(1-t)^2+x^2}$ which agrees with $z_0=-sqrt{1+x^2}$.



          Thus the solution is :
          $$u(x,t)=-sqrt{(1-t)^2+x^2}$$
          $u_x=-frac{x}{sqrt{(1-t)^2+x^2}}$



          $u_t=-frac{-(1-t)}{sqrt{(1-t)^2+x^2}}$



          $(u_x)^2+(u_t)^2=frac{x^2}{(1-t)^2+x^2}+frac{(1-t)^2}{(1-t)^2+x^2}=frac{x^2+(1-t)^2}{(1-t)^2+x^2}$
          $$(u_x)^2+(u_t)^2=1$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034723%2fbehavior-of-the-solution-of-the-eikonal-equation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            You found $p_{2_0}=pm frac{1}{{sqrt{1+r^2}}}$



            Why do you suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$ instead of $p_{2_0}=-frac{1}{{sqrt{1+r^2}}}$ ?



            One have to examine the both cases and chose which one agrees to the boundary condition.



            The supposition with sign $+$ leads to $z=sqrt{(1-t)^2+x^2}$ which doesn't agrees with $z_0=-sqrt{1+x^2}$.



            The supposition with sign $-$ leads to $z=-sqrt{(1-t)^2+x^2}$ which agrees with $z_0=-sqrt{1+x^2}$.



            Thus the solution is :
            $$u(x,t)=-sqrt{(1-t)^2+x^2}$$
            $u_x=-frac{x}{sqrt{(1-t)^2+x^2}}$



            $u_t=-frac{-(1-t)}{sqrt{(1-t)^2+x^2}}$



            $(u_x)^2+(u_t)^2=frac{x^2}{(1-t)^2+x^2}+frac{(1-t)^2}{(1-t)^2+x^2}=frac{x^2+(1-t)^2}{(1-t)^2+x^2}$
            $$(u_x)^2+(u_t)^2=1$$






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              You found $p_{2_0}=pm frac{1}{{sqrt{1+r^2}}}$



              Why do you suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$ instead of $p_{2_0}=-frac{1}{{sqrt{1+r^2}}}$ ?



              One have to examine the both cases and chose which one agrees to the boundary condition.



              The supposition with sign $+$ leads to $z=sqrt{(1-t)^2+x^2}$ which doesn't agrees with $z_0=-sqrt{1+x^2}$.



              The supposition with sign $-$ leads to $z=-sqrt{(1-t)^2+x^2}$ which agrees with $z_0=-sqrt{1+x^2}$.



              Thus the solution is :
              $$u(x,t)=-sqrt{(1-t)^2+x^2}$$
              $u_x=-frac{x}{sqrt{(1-t)^2+x^2}}$



              $u_t=-frac{-(1-t)}{sqrt{(1-t)^2+x^2}}$



              $(u_x)^2+(u_t)^2=frac{x^2}{(1-t)^2+x^2}+frac{(1-t)^2}{(1-t)^2+x^2}=frac{x^2+(1-t)^2}{(1-t)^2+x^2}$
              $$(u_x)^2+(u_t)^2=1$$






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                You found $p_{2_0}=pm frac{1}{{sqrt{1+r^2}}}$



                Why do you suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$ instead of $p_{2_0}=-frac{1}{{sqrt{1+r^2}}}$ ?



                One have to examine the both cases and chose which one agrees to the boundary condition.



                The supposition with sign $+$ leads to $z=sqrt{(1-t)^2+x^2}$ which doesn't agrees with $z_0=-sqrt{1+x^2}$.



                The supposition with sign $-$ leads to $z=-sqrt{(1-t)^2+x^2}$ which agrees with $z_0=-sqrt{1+x^2}$.



                Thus the solution is :
                $$u(x,t)=-sqrt{(1-t)^2+x^2}$$
                $u_x=-frac{x}{sqrt{(1-t)^2+x^2}}$



                $u_t=-frac{-(1-t)}{sqrt{(1-t)^2+x^2}}$



                $(u_x)^2+(u_t)^2=frac{x^2}{(1-t)^2+x^2}+frac{(1-t)^2}{(1-t)^2+x^2}=frac{x^2+(1-t)^2}{(1-t)^2+x^2}$
                $$(u_x)^2+(u_t)^2=1$$






                share|cite|improve this answer











                $endgroup$



                You found $p_{2_0}=pm frac{1}{{sqrt{1+r^2}}}$



                Why do you suppose $p_{2_0}=frac{1}{{sqrt{1+r^2}}}$ instead of $p_{2_0}=-frac{1}{{sqrt{1+r^2}}}$ ?



                One have to examine the both cases and chose which one agrees to the boundary condition.



                The supposition with sign $+$ leads to $z=sqrt{(1-t)^2+x^2}$ which doesn't agrees with $z_0=-sqrt{1+x^2}$.



                The supposition with sign $-$ leads to $z=-sqrt{(1-t)^2+x^2}$ which agrees with $z_0=-sqrt{1+x^2}$.



                Thus the solution is :
                $$u(x,t)=-sqrt{(1-t)^2+x^2}$$
                $u_x=-frac{x}{sqrt{(1-t)^2+x^2}}$



                $u_t=-frac{-(1-t)}{sqrt{(1-t)^2+x^2}}$



                $(u_x)^2+(u_t)^2=frac{x^2}{(1-t)^2+x^2}+frac{(1-t)^2}{(1-t)^2+x^2}=frac{x^2+(1-t)^2}{(1-t)^2+x^2}$
                $$(u_x)^2+(u_t)^2=1$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 11 '18 at 6:59

























                answered Dec 11 '18 at 6:54









                JJacquelinJJacquelin

                44.1k21853




                44.1k21853






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034723%2fbehavior-of-the-solution-of-the-eikonal-equation%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    Puebla de Zaragoza

                    Musa