Differentiate the exponential function $f(x)= frac{x^2e^x}{x^2+e^x}$
$begingroup$
$$f(x)= frac{x^2e^x}{x^2+e^x}$$
Using product rule and quotient rule I computed
$$f'(x)=frac{(x^2+e^x)e^x(x^2 + 2 x ) - x^2e^x(2x+e^x)}{(x^2+e^x)^2}$$
Is my computation correct so far?
calculus exponential-function
$endgroup$
add a comment |
$begingroup$
$$f(x)= frac{x^2e^x}{x^2+e^x}$$
Using product rule and quotient rule I computed
$$f'(x)=frac{(x^2+e^x)e^x(x^2 + 2 x ) - x^2e^x(2x+e^x)}{(x^2+e^x)^2}$$
Is my computation correct so far?
calculus exponential-function
$endgroup$
1
$begingroup$
The 1st part of the numerator is computed wrongly I think.
$endgroup$
– mm-crj
Dec 11 '18 at 0:57
$begingroup$
Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 0:57
$begingroup$
@zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:02
$begingroup$
Yes. That's right :)
$endgroup$
– mm-crj
Dec 11 '18 at 1:05
add a comment |
$begingroup$
$$f(x)= frac{x^2e^x}{x^2+e^x}$$
Using product rule and quotient rule I computed
$$f'(x)=frac{(x^2+e^x)e^x(x^2 + 2 x ) - x^2e^x(2x+e^x)}{(x^2+e^x)^2}$$
Is my computation correct so far?
calculus exponential-function
$endgroup$
$$f(x)= frac{x^2e^x}{x^2+e^x}$$
Using product rule and quotient rule I computed
$$f'(x)=frac{(x^2+e^x)e^x(x^2 + 2 x ) - x^2e^x(2x+e^x)}{(x^2+e^x)^2}$$
Is my computation correct so far?
calculus exponential-function
calculus exponential-function
edited Dec 11 '18 at 3:02
Key Flex
8,28261233
8,28261233
asked Dec 11 '18 at 0:41
Eric BrownEric Brown
757
757
1
$begingroup$
The 1st part of the numerator is computed wrongly I think.
$endgroup$
– mm-crj
Dec 11 '18 at 0:57
$begingroup$
Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 0:57
$begingroup$
@zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:02
$begingroup$
Yes. That's right :)
$endgroup$
– mm-crj
Dec 11 '18 at 1:05
add a comment |
1
$begingroup$
The 1st part of the numerator is computed wrongly I think.
$endgroup$
– mm-crj
Dec 11 '18 at 0:57
$begingroup$
Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 0:57
$begingroup$
@zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:02
$begingroup$
Yes. That's right :)
$endgroup$
– mm-crj
Dec 11 '18 at 1:05
1
1
$begingroup$
The 1st part of the numerator is computed wrongly I think.
$endgroup$
– mm-crj
Dec 11 '18 at 0:57
$begingroup$
The 1st part of the numerator is computed wrongly I think.
$endgroup$
– mm-crj
Dec 11 '18 at 0:57
$begingroup$
Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 0:57
$begingroup$
Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 0:57
$begingroup$
@zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:02
$begingroup$
@zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:02
$begingroup$
Yes. That's right :)
$endgroup$
– mm-crj
Dec 11 '18 at 1:05
$begingroup$
Yes. That's right :)
$endgroup$
– mm-crj
Dec 11 '18 at 1:05
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Given $dfrac{x^2e^x}{x^2+e^x}$
Apply the quotient rule: $left(dfrac uvright)=dfrac{u^{primecdot}cdot v-v^{prime}cdot u}{v^2}$
$$dfrac{d}{dx}left(dfrac{x^2e^x}{x^2+e^x}right)=dfrac{dfrac{d}{dx}(x^2e^x)(x^2+e^x)-dfrac{d}{dx}(x^2+e^x)x^2e^x}{(x^2+e^x)^2}=dfrac{(2xe^x+e^xx^2)(x^2+e^x)-(2x+e^x)(x^2e^x)}{(x^2+e^x)^2}$$
$$=dfrac{e^x+x^4+2e^{2x}x}{(x^2+e^x)^2}$$
Edit:
$dfrac{d}{dx}(x^2e^x)=2xe^x+e^xx^2$ by using product rule
By expanding $(2xe^x+e^x x^2)(x^2+e^x)-(2x+e^x)(x^2e^x)$ we get $e^xx^4+2e^{2x}x$
$endgroup$
$begingroup$
On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
$endgroup$
– Eric Brown
Dec 11 '18 at 1:13
$begingroup$
I don't understand what you have done. (P.S. I am a calculus beginner.)
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:13
$begingroup$
@EricBrown they are the same thing.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:14
$begingroup$
@AryanSonwatikar Is it clear now?
$endgroup$
– Key Flex
Dec 11 '18 at 1:26
$begingroup$
@KeyFlex Yes, it is.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:50
add a comment |
$begingroup$
If you would like to avoid the product and quotient rules altogether you could take the natural logarithm of both sides before differentiating. In doing so we have
$$ln f(x) = 2 ln x + x - ln (x^2 + e^x).$$
Differentiating with respect to $x$ gives
$$frac{f'(x)}{f(x)} = frac{2}{x} + 1 - frac{2x + e^x}{x^2 + e^x},$$
which, after some algebra and simplification, reduces to
$$f'(x) = frac{x e^x (2e^x + x^3)}{(x^2 + e^x)^2}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034707%2fdifferentiate-the-exponential-function-fx-fracx2exx2ex%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Given $dfrac{x^2e^x}{x^2+e^x}$
Apply the quotient rule: $left(dfrac uvright)=dfrac{u^{primecdot}cdot v-v^{prime}cdot u}{v^2}$
$$dfrac{d}{dx}left(dfrac{x^2e^x}{x^2+e^x}right)=dfrac{dfrac{d}{dx}(x^2e^x)(x^2+e^x)-dfrac{d}{dx}(x^2+e^x)x^2e^x}{(x^2+e^x)^2}=dfrac{(2xe^x+e^xx^2)(x^2+e^x)-(2x+e^x)(x^2e^x)}{(x^2+e^x)^2}$$
$$=dfrac{e^x+x^4+2e^{2x}x}{(x^2+e^x)^2}$$
Edit:
$dfrac{d}{dx}(x^2e^x)=2xe^x+e^xx^2$ by using product rule
By expanding $(2xe^x+e^x x^2)(x^2+e^x)-(2x+e^x)(x^2e^x)$ we get $e^xx^4+2e^{2x}x$
$endgroup$
$begingroup$
On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
$endgroup$
– Eric Brown
Dec 11 '18 at 1:13
$begingroup$
I don't understand what you have done. (P.S. I am a calculus beginner.)
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:13
$begingroup$
@EricBrown they are the same thing.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:14
$begingroup$
@AryanSonwatikar Is it clear now?
$endgroup$
– Key Flex
Dec 11 '18 at 1:26
$begingroup$
@KeyFlex Yes, it is.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:50
add a comment |
$begingroup$
Given $dfrac{x^2e^x}{x^2+e^x}$
Apply the quotient rule: $left(dfrac uvright)=dfrac{u^{primecdot}cdot v-v^{prime}cdot u}{v^2}$
$$dfrac{d}{dx}left(dfrac{x^2e^x}{x^2+e^x}right)=dfrac{dfrac{d}{dx}(x^2e^x)(x^2+e^x)-dfrac{d}{dx}(x^2+e^x)x^2e^x}{(x^2+e^x)^2}=dfrac{(2xe^x+e^xx^2)(x^2+e^x)-(2x+e^x)(x^2e^x)}{(x^2+e^x)^2}$$
$$=dfrac{e^x+x^4+2e^{2x}x}{(x^2+e^x)^2}$$
Edit:
$dfrac{d}{dx}(x^2e^x)=2xe^x+e^xx^2$ by using product rule
By expanding $(2xe^x+e^x x^2)(x^2+e^x)-(2x+e^x)(x^2e^x)$ we get $e^xx^4+2e^{2x}x$
$endgroup$
$begingroup$
On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
$endgroup$
– Eric Brown
Dec 11 '18 at 1:13
$begingroup$
I don't understand what you have done. (P.S. I am a calculus beginner.)
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:13
$begingroup$
@EricBrown they are the same thing.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:14
$begingroup$
@AryanSonwatikar Is it clear now?
$endgroup$
– Key Flex
Dec 11 '18 at 1:26
$begingroup$
@KeyFlex Yes, it is.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:50
add a comment |
$begingroup$
Given $dfrac{x^2e^x}{x^2+e^x}$
Apply the quotient rule: $left(dfrac uvright)=dfrac{u^{primecdot}cdot v-v^{prime}cdot u}{v^2}$
$$dfrac{d}{dx}left(dfrac{x^2e^x}{x^2+e^x}right)=dfrac{dfrac{d}{dx}(x^2e^x)(x^2+e^x)-dfrac{d}{dx}(x^2+e^x)x^2e^x}{(x^2+e^x)^2}=dfrac{(2xe^x+e^xx^2)(x^2+e^x)-(2x+e^x)(x^2e^x)}{(x^2+e^x)^2}$$
$$=dfrac{e^x+x^4+2e^{2x}x}{(x^2+e^x)^2}$$
Edit:
$dfrac{d}{dx}(x^2e^x)=2xe^x+e^xx^2$ by using product rule
By expanding $(2xe^x+e^x x^2)(x^2+e^x)-(2x+e^x)(x^2e^x)$ we get $e^xx^4+2e^{2x}x$
$endgroup$
Given $dfrac{x^2e^x}{x^2+e^x}$
Apply the quotient rule: $left(dfrac uvright)=dfrac{u^{primecdot}cdot v-v^{prime}cdot u}{v^2}$
$$dfrac{d}{dx}left(dfrac{x^2e^x}{x^2+e^x}right)=dfrac{dfrac{d}{dx}(x^2e^x)(x^2+e^x)-dfrac{d}{dx}(x^2+e^x)x^2e^x}{(x^2+e^x)^2}=dfrac{(2xe^x+e^xx^2)(x^2+e^x)-(2x+e^x)(x^2e^x)}{(x^2+e^x)^2}$$
$$=dfrac{e^x+x^4+2e^{2x}x}{(x^2+e^x)^2}$$
Edit:
$dfrac{d}{dx}(x^2e^x)=2xe^x+e^xx^2$ by using product rule
By expanding $(2xe^x+e^x x^2)(x^2+e^x)-(2x+e^x)(x^2e^x)$ we get $e^xx^4+2e^{2x}x$
edited Dec 11 '18 at 1:26
answered Dec 11 '18 at 1:05
Key FlexKey Flex
8,28261233
8,28261233
$begingroup$
On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
$endgroup$
– Eric Brown
Dec 11 '18 at 1:13
$begingroup$
I don't understand what you have done. (P.S. I am a calculus beginner.)
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:13
$begingroup$
@EricBrown they are the same thing.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:14
$begingroup$
@AryanSonwatikar Is it clear now?
$endgroup$
– Key Flex
Dec 11 '18 at 1:26
$begingroup$
@KeyFlex Yes, it is.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:50
add a comment |
$begingroup$
On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
$endgroup$
– Eric Brown
Dec 11 '18 at 1:13
$begingroup$
I don't understand what you have done. (P.S. I am a calculus beginner.)
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:13
$begingroup$
@EricBrown they are the same thing.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:14
$begingroup$
@AryanSonwatikar Is it clear now?
$endgroup$
– Key Flex
Dec 11 '18 at 1:26
$begingroup$
@KeyFlex Yes, it is.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:50
$begingroup$
On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
$endgroup$
– Eric Brown
Dec 11 '18 at 1:13
$begingroup$
On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
$endgroup$
– Eric Brown
Dec 11 '18 at 1:13
$begingroup$
I don't understand what you have done. (P.S. I am a calculus beginner.)
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:13
$begingroup$
I don't understand what you have done. (P.S. I am a calculus beginner.)
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:13
$begingroup$
@EricBrown they are the same thing.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:14
$begingroup$
@EricBrown they are the same thing.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:14
$begingroup$
@AryanSonwatikar Is it clear now?
$endgroup$
– Key Flex
Dec 11 '18 at 1:26
$begingroup$
@AryanSonwatikar Is it clear now?
$endgroup$
– Key Flex
Dec 11 '18 at 1:26
$begingroup$
@KeyFlex Yes, it is.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:50
$begingroup$
@KeyFlex Yes, it is.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:50
add a comment |
$begingroup$
If you would like to avoid the product and quotient rules altogether you could take the natural logarithm of both sides before differentiating. In doing so we have
$$ln f(x) = 2 ln x + x - ln (x^2 + e^x).$$
Differentiating with respect to $x$ gives
$$frac{f'(x)}{f(x)} = frac{2}{x} + 1 - frac{2x + e^x}{x^2 + e^x},$$
which, after some algebra and simplification, reduces to
$$f'(x) = frac{x e^x (2e^x + x^3)}{(x^2 + e^x)^2}.$$
$endgroup$
add a comment |
$begingroup$
If you would like to avoid the product and quotient rules altogether you could take the natural logarithm of both sides before differentiating. In doing so we have
$$ln f(x) = 2 ln x + x - ln (x^2 + e^x).$$
Differentiating with respect to $x$ gives
$$frac{f'(x)}{f(x)} = frac{2}{x} + 1 - frac{2x + e^x}{x^2 + e^x},$$
which, after some algebra and simplification, reduces to
$$f'(x) = frac{x e^x (2e^x + x^3)}{(x^2 + e^x)^2}.$$
$endgroup$
add a comment |
$begingroup$
If you would like to avoid the product and quotient rules altogether you could take the natural logarithm of both sides before differentiating. In doing so we have
$$ln f(x) = 2 ln x + x - ln (x^2 + e^x).$$
Differentiating with respect to $x$ gives
$$frac{f'(x)}{f(x)} = frac{2}{x} + 1 - frac{2x + e^x}{x^2 + e^x},$$
which, after some algebra and simplification, reduces to
$$f'(x) = frac{x e^x (2e^x + x^3)}{(x^2 + e^x)^2}.$$
$endgroup$
If you would like to avoid the product and quotient rules altogether you could take the natural logarithm of both sides before differentiating. In doing so we have
$$ln f(x) = 2 ln x + x - ln (x^2 + e^x).$$
Differentiating with respect to $x$ gives
$$frac{f'(x)}{f(x)} = frac{2}{x} + 1 - frac{2x + e^x}{x^2 + e^x},$$
which, after some algebra and simplification, reduces to
$$f'(x) = frac{x e^x (2e^x + x^3)}{(x^2 + e^x)^2}.$$
answered Dec 11 '18 at 2:02
omegadotomegadot
6,0222828
6,0222828
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034707%2fdifferentiate-the-exponential-function-fx-fracx2exx2ex%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The 1st part of the numerator is computed wrongly I think.
$endgroup$
– mm-crj
Dec 11 '18 at 0:57
$begingroup$
Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 0:57
$begingroup$
@zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:02
$begingroup$
Yes. That's right :)
$endgroup$
– mm-crj
Dec 11 '18 at 1:05