Differentiate the exponential function $f(x)= frac{x^2e^x}{x^2+e^x}$












0












$begingroup$


$$f(x)= frac{x^2e^x}{x^2+e^x}$$



Using product rule and quotient rule I computed



$$f'(x)=frac{(x^2+e^x)e^x(x^2 + 2 x ) - x^2e^x(2x+e^x)}{(x^2+e^x)^2}$$



Is my computation correct so far?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The 1st part of the numerator is computed wrongly I think.
    $endgroup$
    – mm-crj
    Dec 11 '18 at 0:57










  • $begingroup$
    Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 0:57










  • $begingroup$
    @zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:02












  • $begingroup$
    Yes. That's right :)
    $endgroup$
    – mm-crj
    Dec 11 '18 at 1:05
















0












$begingroup$


$$f(x)= frac{x^2e^x}{x^2+e^x}$$



Using product rule and quotient rule I computed



$$f'(x)=frac{(x^2+e^x)e^x(x^2 + 2 x ) - x^2e^x(2x+e^x)}{(x^2+e^x)^2}$$



Is my computation correct so far?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The 1st part of the numerator is computed wrongly I think.
    $endgroup$
    – mm-crj
    Dec 11 '18 at 0:57










  • $begingroup$
    Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 0:57










  • $begingroup$
    @zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:02












  • $begingroup$
    Yes. That's right :)
    $endgroup$
    – mm-crj
    Dec 11 '18 at 1:05














0












0








0





$begingroup$


$$f(x)= frac{x^2e^x}{x^2+e^x}$$



Using product rule and quotient rule I computed



$$f'(x)=frac{(x^2+e^x)e^x(x^2 + 2 x ) - x^2e^x(2x+e^x)}{(x^2+e^x)^2}$$



Is my computation correct so far?










share|cite|improve this question











$endgroup$




$$f(x)= frac{x^2e^x}{x^2+e^x}$$



Using product rule and quotient rule I computed



$$f'(x)=frac{(x^2+e^x)e^x(x^2 + 2 x ) - x^2e^x(2x+e^x)}{(x^2+e^x)^2}$$



Is my computation correct so far?







calculus exponential-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 11 '18 at 3:02









Key Flex

8,28261233




8,28261233










asked Dec 11 '18 at 0:41









Eric BrownEric Brown

757




757








  • 1




    $begingroup$
    The 1st part of the numerator is computed wrongly I think.
    $endgroup$
    – mm-crj
    Dec 11 '18 at 0:57










  • $begingroup$
    Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 0:57










  • $begingroup$
    @zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:02












  • $begingroup$
    Yes. That's right :)
    $endgroup$
    – mm-crj
    Dec 11 '18 at 1:05














  • 1




    $begingroup$
    The 1st part of the numerator is computed wrongly I think.
    $endgroup$
    – mm-crj
    Dec 11 '18 at 0:57










  • $begingroup$
    Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 0:57










  • $begingroup$
    @zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:02












  • $begingroup$
    Yes. That's right :)
    $endgroup$
    – mm-crj
    Dec 11 '18 at 1:05








1




1




$begingroup$
The 1st part of the numerator is computed wrongly I think.
$endgroup$
– mm-crj
Dec 11 '18 at 0:57




$begingroup$
The 1st part of the numerator is computed wrongly I think.
$endgroup$
– mm-crj
Dec 11 '18 at 0:57












$begingroup$
Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 0:57




$begingroup$
Yes, except the fact that you will have to put brackets around $x^2 + e^x$ in the numerator.
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 0:57












$begingroup$
@zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:02






$begingroup$
@zenith, right. It should be $(x^2+e^x)e^x(x^2+2x)$
$endgroup$
– AryanSonwatikar
Dec 11 '18 at 1:02














$begingroup$
Yes. That's right :)
$endgroup$
– mm-crj
Dec 11 '18 at 1:05




$begingroup$
Yes. That's right :)
$endgroup$
– mm-crj
Dec 11 '18 at 1:05










2 Answers
2






active

oldest

votes


















2












$begingroup$

Given $dfrac{x^2e^x}{x^2+e^x}$



Apply the quotient rule: $left(dfrac uvright)=dfrac{u^{primecdot}cdot v-v^{prime}cdot u}{v^2}$
$$dfrac{d}{dx}left(dfrac{x^2e^x}{x^2+e^x}right)=dfrac{dfrac{d}{dx}(x^2e^x)(x^2+e^x)-dfrac{d}{dx}(x^2+e^x)x^2e^x}{(x^2+e^x)^2}=dfrac{(2xe^x+e^xx^2)(x^2+e^x)-(2x+e^x)(x^2e^x)}{(x^2+e^x)^2}$$



$$=dfrac{e^x+x^4+2e^{2x}x}{(x^2+e^x)^2}$$



Edit:



$dfrac{d}{dx}(x^2e^x)=2xe^x+e^xx^2$ by using product rule



By expanding $(2xe^x+e^x x^2)(x^2+e^x)-(2x+e^x)(x^2e^x)$ we get $e^xx^4+2e^{2x}x$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
    $endgroup$
    – Eric Brown
    Dec 11 '18 at 1:13












  • $begingroup$
    I don't understand what you have done. (P.S. I am a calculus beginner.)
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:13










  • $begingroup$
    @EricBrown they are the same thing.
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:14










  • $begingroup$
    @AryanSonwatikar Is it clear now?
    $endgroup$
    – Key Flex
    Dec 11 '18 at 1:26










  • $begingroup$
    @KeyFlex Yes, it is.
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:50



















1












$begingroup$

If you would like to avoid the product and quotient rules altogether you could take the natural logarithm of both sides before differentiating. In doing so we have
$$ln f(x) = 2 ln x + x - ln (x^2 + e^x).$$
Differentiating with respect to $x$ gives
$$frac{f'(x)}{f(x)} = frac{2}{x} + 1 - frac{2x + e^x}{x^2 + e^x},$$
which, after some algebra and simplification, reduces to
$$f'(x) = frac{x e^x (2e^x + x^3)}{(x^2 + e^x)^2}.$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034707%2fdifferentiate-the-exponential-function-fx-fracx2exx2ex%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Given $dfrac{x^2e^x}{x^2+e^x}$



    Apply the quotient rule: $left(dfrac uvright)=dfrac{u^{primecdot}cdot v-v^{prime}cdot u}{v^2}$
    $$dfrac{d}{dx}left(dfrac{x^2e^x}{x^2+e^x}right)=dfrac{dfrac{d}{dx}(x^2e^x)(x^2+e^x)-dfrac{d}{dx}(x^2+e^x)x^2e^x}{(x^2+e^x)^2}=dfrac{(2xe^x+e^xx^2)(x^2+e^x)-(2x+e^x)(x^2e^x)}{(x^2+e^x)^2}$$



    $$=dfrac{e^x+x^4+2e^{2x}x}{(x^2+e^x)^2}$$



    Edit:



    $dfrac{d}{dx}(x^2e^x)=2xe^x+e^xx^2$ by using product rule



    By expanding $(2xe^x+e^x x^2)(x^2+e^x)-(2x+e^x)(x^2e^x)$ we get $e^xx^4+2e^{2x}x$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
      $endgroup$
      – Eric Brown
      Dec 11 '18 at 1:13












    • $begingroup$
      I don't understand what you have done. (P.S. I am a calculus beginner.)
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:13










    • $begingroup$
      @EricBrown they are the same thing.
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:14










    • $begingroup$
      @AryanSonwatikar Is it clear now?
      $endgroup$
      – Key Flex
      Dec 11 '18 at 1:26










    • $begingroup$
      @KeyFlex Yes, it is.
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:50
















    2












    $begingroup$

    Given $dfrac{x^2e^x}{x^2+e^x}$



    Apply the quotient rule: $left(dfrac uvright)=dfrac{u^{primecdot}cdot v-v^{prime}cdot u}{v^2}$
    $$dfrac{d}{dx}left(dfrac{x^2e^x}{x^2+e^x}right)=dfrac{dfrac{d}{dx}(x^2e^x)(x^2+e^x)-dfrac{d}{dx}(x^2+e^x)x^2e^x}{(x^2+e^x)^2}=dfrac{(2xe^x+e^xx^2)(x^2+e^x)-(2x+e^x)(x^2e^x)}{(x^2+e^x)^2}$$



    $$=dfrac{e^x+x^4+2e^{2x}x}{(x^2+e^x)^2}$$



    Edit:



    $dfrac{d}{dx}(x^2e^x)=2xe^x+e^xx^2$ by using product rule



    By expanding $(2xe^x+e^x x^2)(x^2+e^x)-(2x+e^x)(x^2e^x)$ we get $e^xx^4+2e^{2x}x$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
      $endgroup$
      – Eric Brown
      Dec 11 '18 at 1:13












    • $begingroup$
      I don't understand what you have done. (P.S. I am a calculus beginner.)
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:13










    • $begingroup$
      @EricBrown they are the same thing.
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:14










    • $begingroup$
      @AryanSonwatikar Is it clear now?
      $endgroup$
      – Key Flex
      Dec 11 '18 at 1:26










    • $begingroup$
      @KeyFlex Yes, it is.
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:50














    2












    2








    2





    $begingroup$

    Given $dfrac{x^2e^x}{x^2+e^x}$



    Apply the quotient rule: $left(dfrac uvright)=dfrac{u^{primecdot}cdot v-v^{prime}cdot u}{v^2}$
    $$dfrac{d}{dx}left(dfrac{x^2e^x}{x^2+e^x}right)=dfrac{dfrac{d}{dx}(x^2e^x)(x^2+e^x)-dfrac{d}{dx}(x^2+e^x)x^2e^x}{(x^2+e^x)^2}=dfrac{(2xe^x+e^xx^2)(x^2+e^x)-(2x+e^x)(x^2e^x)}{(x^2+e^x)^2}$$



    $$=dfrac{e^x+x^4+2e^{2x}x}{(x^2+e^x)^2}$$



    Edit:



    $dfrac{d}{dx}(x^2e^x)=2xe^x+e^xx^2$ by using product rule



    By expanding $(2xe^x+e^x x^2)(x^2+e^x)-(2x+e^x)(x^2e^x)$ we get $e^xx^4+2e^{2x}x$






    share|cite|improve this answer











    $endgroup$



    Given $dfrac{x^2e^x}{x^2+e^x}$



    Apply the quotient rule: $left(dfrac uvright)=dfrac{u^{primecdot}cdot v-v^{prime}cdot u}{v^2}$
    $$dfrac{d}{dx}left(dfrac{x^2e^x}{x^2+e^x}right)=dfrac{dfrac{d}{dx}(x^2e^x)(x^2+e^x)-dfrac{d}{dx}(x^2+e^x)x^2e^x}{(x^2+e^x)^2}=dfrac{(2xe^x+e^xx^2)(x^2+e^x)-(2x+e^x)(x^2e^x)}{(x^2+e^x)^2}$$



    $$=dfrac{e^x+x^4+2e^{2x}x}{(x^2+e^x)^2}$$



    Edit:



    $dfrac{d}{dx}(x^2e^x)=2xe^x+e^xx^2$ by using product rule



    By expanding $(2xe^x+e^x x^2)(x^2+e^x)-(2x+e^x)(x^2e^x)$ we get $e^xx^4+2e^{2x}x$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 11 '18 at 1:26

























    answered Dec 11 '18 at 1:05









    Key FlexKey Flex

    8,28261233




    8,28261233












    • $begingroup$
      On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
      $endgroup$
      – Eric Brown
      Dec 11 '18 at 1:13












    • $begingroup$
      I don't understand what you have done. (P.S. I am a calculus beginner.)
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:13










    • $begingroup$
      @EricBrown they are the same thing.
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:14










    • $begingroup$
      @AryanSonwatikar Is it clear now?
      $endgroup$
      – Key Flex
      Dec 11 '18 at 1:26










    • $begingroup$
      @KeyFlex Yes, it is.
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:50


















    • $begingroup$
      On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
      $endgroup$
      – Eric Brown
      Dec 11 '18 at 1:13












    • $begingroup$
      I don't understand what you have done. (P.S. I am a calculus beginner.)
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:13










    • $begingroup$
      @EricBrown they are the same thing.
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:14










    • $begingroup$
      @AryanSonwatikar Is it clear now?
      $endgroup$
      – Key Flex
      Dec 11 '18 at 1:26










    • $begingroup$
      @KeyFlex Yes, it is.
      $endgroup$
      – AryanSonwatikar
      Dec 11 '18 at 1:50
















    $begingroup$
    On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
    $endgroup$
    – Eric Brown
    Dec 11 '18 at 1:13






    $begingroup$
    On the 2nd line that $2xe^x+e^xx^2$, shouldn't it be $2xe^x+x^2e^x$?
    $endgroup$
    – Eric Brown
    Dec 11 '18 at 1:13














    $begingroup$
    I don't understand what you have done. (P.S. I am a calculus beginner.)
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:13




    $begingroup$
    I don't understand what you have done. (P.S. I am a calculus beginner.)
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:13












    $begingroup$
    @EricBrown they are the same thing.
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:14




    $begingroup$
    @EricBrown they are the same thing.
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:14












    $begingroup$
    @AryanSonwatikar Is it clear now?
    $endgroup$
    – Key Flex
    Dec 11 '18 at 1:26




    $begingroup$
    @AryanSonwatikar Is it clear now?
    $endgroup$
    – Key Flex
    Dec 11 '18 at 1:26












    $begingroup$
    @KeyFlex Yes, it is.
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:50




    $begingroup$
    @KeyFlex Yes, it is.
    $endgroup$
    – AryanSonwatikar
    Dec 11 '18 at 1:50











    1












    $begingroup$

    If you would like to avoid the product and quotient rules altogether you could take the natural logarithm of both sides before differentiating. In doing so we have
    $$ln f(x) = 2 ln x + x - ln (x^2 + e^x).$$
    Differentiating with respect to $x$ gives
    $$frac{f'(x)}{f(x)} = frac{2}{x} + 1 - frac{2x + e^x}{x^2 + e^x},$$
    which, after some algebra and simplification, reduces to
    $$f'(x) = frac{x e^x (2e^x + x^3)}{(x^2 + e^x)^2}.$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      If you would like to avoid the product and quotient rules altogether you could take the natural logarithm of both sides before differentiating. In doing so we have
      $$ln f(x) = 2 ln x + x - ln (x^2 + e^x).$$
      Differentiating with respect to $x$ gives
      $$frac{f'(x)}{f(x)} = frac{2}{x} + 1 - frac{2x + e^x}{x^2 + e^x},$$
      which, after some algebra and simplification, reduces to
      $$f'(x) = frac{x e^x (2e^x + x^3)}{(x^2 + e^x)^2}.$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        If you would like to avoid the product and quotient rules altogether you could take the natural logarithm of both sides before differentiating. In doing so we have
        $$ln f(x) = 2 ln x + x - ln (x^2 + e^x).$$
        Differentiating with respect to $x$ gives
        $$frac{f'(x)}{f(x)} = frac{2}{x} + 1 - frac{2x + e^x}{x^2 + e^x},$$
        which, after some algebra and simplification, reduces to
        $$f'(x) = frac{x e^x (2e^x + x^3)}{(x^2 + e^x)^2}.$$






        share|cite|improve this answer









        $endgroup$



        If you would like to avoid the product and quotient rules altogether you could take the natural logarithm of both sides before differentiating. In doing so we have
        $$ln f(x) = 2 ln x + x - ln (x^2 + e^x).$$
        Differentiating with respect to $x$ gives
        $$frac{f'(x)}{f(x)} = frac{2}{x} + 1 - frac{2x + e^x}{x^2 + e^x},$$
        which, after some algebra and simplification, reduces to
        $$f'(x) = frac{x e^x (2e^x + x^3)}{(x^2 + e^x)^2}.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 11 '18 at 2:02









        omegadotomegadot

        6,0222828




        6,0222828






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034707%2fdifferentiate-the-exponential-function-fx-fracx2exx2ex%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa