How to find the taylor series for $f(x) = frac{1}{16-x^2}$ centered at 9 in summation notation
$begingroup$
Having trouble finding the taylor series for the following function:
$$f(x) = frac{1}{16-x^2} textrm{ centered at c=9}$$
I was trying to look at it in a way such that I could modify $frac{1}{1-x} = sum_{n=0}^{infty} x^n$. I wasn't able to come up with anything though.
I found some of the first few terms, but I can't see to find all the patterns.
$$frac{1}{16-x^2} = frac{-1}{65} + frac{18}{4225}(x-9) - frac{518}{274625}(x-9)^2$$
I noticed the denominators multiply by 65 each time. Can't seem to find a pattern for the numerator though.
Seems to be something like:
$$2x = 2(9) = 18$$
$$6x^2 + 32 = 6(9^2) +32 = 518$$
$$24x^3 + 384x = textrm{next numerator}$$
Pattern doesn't seem to stay much or gets more complex though. Any idea how to solve this problem?
calculus sequences-and-series taylor-expansion
$endgroup$
add a comment |
$begingroup$
Having trouble finding the taylor series for the following function:
$$f(x) = frac{1}{16-x^2} textrm{ centered at c=9}$$
I was trying to look at it in a way such that I could modify $frac{1}{1-x} = sum_{n=0}^{infty} x^n$. I wasn't able to come up with anything though.
I found some of the first few terms, but I can't see to find all the patterns.
$$frac{1}{16-x^2} = frac{-1}{65} + frac{18}{4225}(x-9) - frac{518}{274625}(x-9)^2$$
I noticed the denominators multiply by 65 each time. Can't seem to find a pattern for the numerator though.
Seems to be something like:
$$2x = 2(9) = 18$$
$$6x^2 + 32 = 6(9^2) +32 = 518$$
$$24x^3 + 384x = textrm{next numerator}$$
Pattern doesn't seem to stay much or gets more complex though. Any idea how to solve this problem?
calculus sequences-and-series taylor-expansion
$endgroup$
add a comment |
$begingroup$
Having trouble finding the taylor series for the following function:
$$f(x) = frac{1}{16-x^2} textrm{ centered at c=9}$$
I was trying to look at it in a way such that I could modify $frac{1}{1-x} = sum_{n=0}^{infty} x^n$. I wasn't able to come up with anything though.
I found some of the first few terms, but I can't see to find all the patterns.
$$frac{1}{16-x^2} = frac{-1}{65} + frac{18}{4225}(x-9) - frac{518}{274625}(x-9)^2$$
I noticed the denominators multiply by 65 each time. Can't seem to find a pattern for the numerator though.
Seems to be something like:
$$2x = 2(9) = 18$$
$$6x^2 + 32 = 6(9^2) +32 = 518$$
$$24x^3 + 384x = textrm{next numerator}$$
Pattern doesn't seem to stay much or gets more complex though. Any idea how to solve this problem?
calculus sequences-and-series taylor-expansion
$endgroup$
Having trouble finding the taylor series for the following function:
$$f(x) = frac{1}{16-x^2} textrm{ centered at c=9}$$
I was trying to look at it in a way such that I could modify $frac{1}{1-x} = sum_{n=0}^{infty} x^n$. I wasn't able to come up with anything though.
I found some of the first few terms, but I can't see to find all the patterns.
$$frac{1}{16-x^2} = frac{-1}{65} + frac{18}{4225}(x-9) - frac{518}{274625}(x-9)^2$$
I noticed the denominators multiply by 65 each time. Can't seem to find a pattern for the numerator though.
Seems to be something like:
$$2x = 2(9) = 18$$
$$6x^2 + 32 = 6(9^2) +32 = 518$$
$$24x^3 + 384x = textrm{next numerator}$$
Pattern doesn't seem to stay much or gets more complex though. Any idea how to solve this problem?
calculus sequences-and-series taylor-expansion
calculus sequences-and-series taylor-expansion
asked Dec 11 '18 at 1:40
James MitchellJames Mitchell
25627
25627
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Write
begin{align*}
f(x) & = frac{1}{16-x^2}\
& = frac{1}{8}left[frac{1}{4-x}+frac{1}{4+x}right]\
& = frac{1}{8}left[frac{1}{-5-(x-9)}+frac{1}{13+(x-9)}right]\
& = frac{1}{8}left[frac{1}{-5}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{13}left(frac{1}{1+frac{x-9}{13}}right)right]\
& = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)
end{align*}
Now use the geometric series expansion
$$frac{1}{1+frac{x-a}{b}}=sum_{k=0}^{infty}(-1)^kleft(frac{x-a}{b}right)^k,$$
to get,
begin{align*}
f(x) & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)\
&=frac{1}{-40}sum_{k=0}^{infty}(-1)^kleft(frac{x-9}{5}right)^k+frac{1}{104}(-1)^kleft(frac{x-9}{13}right)^k\
&=sum_{k=0}^{infty}(-1)^kleft(frac{1}{(-40)5^k}+frac{1}{(104)13^k}right)(x-9)^k\
&=sum_{k=0}^{infty}color{red}{frac{(-1)^k}{8}left(frac{5^{k+1}-13^{k+1}}{65^{k+1}}right)}(x-9)^k\
end{align*}
$endgroup$
$begingroup$
Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
$endgroup$
– Ricardo Largaespada
Dec 11 '18 at 2:50
$begingroup$
@RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
$endgroup$
– Anurag A
Dec 11 '18 at 5:11
add a comment |
$begingroup$
Decompose:
$$frac{1}{16-x^2}=frac{1}{(4-x)(4+x)}=frac18left[frac1{4-x}+frac1{4+x}right]$$
Expand each term separately:
$$begin{align}f(9)&=frac1{4-9}=-frac15; \
f'(9)&=frac1{(4-9)^2}=frac1{5^2};\
f''(9)&=-frac2{(4-9)^3}=-frac2{5^3};\
&vdots\
frac1{4-x}&=-frac15+frac{1}{1!cdot 5^2}(x-9)-frac2{2!cdot 5^3}(x-9)^2+cdots+(-1)^{n+1}frac{(n-1)!}{(n-1)!cdot 5^{n+1}}(x-9)^n+cdots\
=====&========================================== \
f(9)&=frac1{4+9}=frac1{13};\
f'(9)&=-frac1{(4+9)^2}=-frac1{13^2};\
f''(9)&=frac2{(4+9)^3}=frac2{13^3};\
&vdots\
frac1{4+x}&=frac1{13}-frac{1}{1!cdot 13^2}(x-9)+frac2{2!cdot 13^3}(x-9)^3+cdots+(-1)^nfrac{(n-1)!}{(n-1)!cdot 13^{n+1}}(x-9)^n+cdots\
end{align}$$
Hence:
$$begin{align}frac1{16-x^2}&=frac18left[sum_{n=0}^{infty} frac{(-1)^{n+1}}{5^{n+1}}(x-9)^n+sum_{n=0}^{infty} frac{(-1)^{n}}{13^{n+1}}(x-9)^nright]=\
&=frac18sum_{n=0}^{infty} frac{1}{65^{n+1}}left[(-1)^{n+1}13^{n+1}+(-1)^n5^{n+1}right](x-9)^n=\
&=frac18sum_{n=0}^{infty} 65^{-n-1}left[(-13)^{n+1}+(-1)^n5^{n+1}right](x-9)^n.
end{align}$$
See WolframAlpha's answer.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034758%2fhow-to-find-the-taylor-series-for-fx-frac116-x2-centered-at-9-in-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Write
begin{align*}
f(x) & = frac{1}{16-x^2}\
& = frac{1}{8}left[frac{1}{4-x}+frac{1}{4+x}right]\
& = frac{1}{8}left[frac{1}{-5-(x-9)}+frac{1}{13+(x-9)}right]\
& = frac{1}{8}left[frac{1}{-5}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{13}left(frac{1}{1+frac{x-9}{13}}right)right]\
& = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)
end{align*}
Now use the geometric series expansion
$$frac{1}{1+frac{x-a}{b}}=sum_{k=0}^{infty}(-1)^kleft(frac{x-a}{b}right)^k,$$
to get,
begin{align*}
f(x) & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)\
&=frac{1}{-40}sum_{k=0}^{infty}(-1)^kleft(frac{x-9}{5}right)^k+frac{1}{104}(-1)^kleft(frac{x-9}{13}right)^k\
&=sum_{k=0}^{infty}(-1)^kleft(frac{1}{(-40)5^k}+frac{1}{(104)13^k}right)(x-9)^k\
&=sum_{k=0}^{infty}color{red}{frac{(-1)^k}{8}left(frac{5^{k+1}-13^{k+1}}{65^{k+1}}right)}(x-9)^k\
end{align*}
$endgroup$
$begingroup$
Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
$endgroup$
– Ricardo Largaespada
Dec 11 '18 at 2:50
$begingroup$
@RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
$endgroup$
– Anurag A
Dec 11 '18 at 5:11
add a comment |
$begingroup$
Write
begin{align*}
f(x) & = frac{1}{16-x^2}\
& = frac{1}{8}left[frac{1}{4-x}+frac{1}{4+x}right]\
& = frac{1}{8}left[frac{1}{-5-(x-9)}+frac{1}{13+(x-9)}right]\
& = frac{1}{8}left[frac{1}{-5}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{13}left(frac{1}{1+frac{x-9}{13}}right)right]\
& = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)
end{align*}
Now use the geometric series expansion
$$frac{1}{1+frac{x-a}{b}}=sum_{k=0}^{infty}(-1)^kleft(frac{x-a}{b}right)^k,$$
to get,
begin{align*}
f(x) & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)\
&=frac{1}{-40}sum_{k=0}^{infty}(-1)^kleft(frac{x-9}{5}right)^k+frac{1}{104}(-1)^kleft(frac{x-9}{13}right)^k\
&=sum_{k=0}^{infty}(-1)^kleft(frac{1}{(-40)5^k}+frac{1}{(104)13^k}right)(x-9)^k\
&=sum_{k=0}^{infty}color{red}{frac{(-1)^k}{8}left(frac{5^{k+1}-13^{k+1}}{65^{k+1}}right)}(x-9)^k\
end{align*}
$endgroup$
$begingroup$
Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
$endgroup$
– Ricardo Largaespada
Dec 11 '18 at 2:50
$begingroup$
@RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
$endgroup$
– Anurag A
Dec 11 '18 at 5:11
add a comment |
$begingroup$
Write
begin{align*}
f(x) & = frac{1}{16-x^2}\
& = frac{1}{8}left[frac{1}{4-x}+frac{1}{4+x}right]\
& = frac{1}{8}left[frac{1}{-5-(x-9)}+frac{1}{13+(x-9)}right]\
& = frac{1}{8}left[frac{1}{-5}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{13}left(frac{1}{1+frac{x-9}{13}}right)right]\
& = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)
end{align*}
Now use the geometric series expansion
$$frac{1}{1+frac{x-a}{b}}=sum_{k=0}^{infty}(-1)^kleft(frac{x-a}{b}right)^k,$$
to get,
begin{align*}
f(x) & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)\
&=frac{1}{-40}sum_{k=0}^{infty}(-1)^kleft(frac{x-9}{5}right)^k+frac{1}{104}(-1)^kleft(frac{x-9}{13}right)^k\
&=sum_{k=0}^{infty}(-1)^kleft(frac{1}{(-40)5^k}+frac{1}{(104)13^k}right)(x-9)^k\
&=sum_{k=0}^{infty}color{red}{frac{(-1)^k}{8}left(frac{5^{k+1}-13^{k+1}}{65^{k+1}}right)}(x-9)^k\
end{align*}
$endgroup$
Write
begin{align*}
f(x) & = frac{1}{16-x^2}\
& = frac{1}{8}left[frac{1}{4-x}+frac{1}{4+x}right]\
& = frac{1}{8}left[frac{1}{-5-(x-9)}+frac{1}{13+(x-9)}right]\
& = frac{1}{8}left[frac{1}{-5}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{13}left(frac{1}{1+frac{x-9}{13}}right)right]\
& = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)
end{align*}
Now use the geometric series expansion
$$frac{1}{1+frac{x-a}{b}}=sum_{k=0}^{infty}(-1)^kleft(frac{x-a}{b}right)^k,$$
to get,
begin{align*}
f(x) & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)\
&=frac{1}{-40}sum_{k=0}^{infty}(-1)^kleft(frac{x-9}{5}right)^k+frac{1}{104}(-1)^kleft(frac{x-9}{13}right)^k\
&=sum_{k=0}^{infty}(-1)^kleft(frac{1}{(-40)5^k}+frac{1}{(104)13^k}right)(x-9)^k\
&=sum_{k=0}^{infty}color{red}{frac{(-1)^k}{8}left(frac{5^{k+1}-13^{k+1}}{65^{k+1}}right)}(x-9)^k\
end{align*}
edited Dec 11 '18 at 5:11
answered Dec 11 '18 at 1:52
Anurag AAnurag A
26.2k12251
26.2k12251
$begingroup$
Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
$endgroup$
– Ricardo Largaespada
Dec 11 '18 at 2:50
$begingroup$
@RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
$endgroup$
– Anurag A
Dec 11 '18 at 5:11
add a comment |
$begingroup$
Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
$endgroup$
– Ricardo Largaespada
Dec 11 '18 at 2:50
$begingroup$
@RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
$endgroup$
– Anurag A
Dec 11 '18 at 5:11
$begingroup$
Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
$endgroup$
– Ricardo Largaespada
Dec 11 '18 at 2:50
$begingroup$
Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
$endgroup$
– Ricardo Largaespada
Dec 11 '18 at 2:50
$begingroup$
@RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
$endgroup$
– Anurag A
Dec 11 '18 at 5:11
$begingroup$
@RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
$endgroup$
– Anurag A
Dec 11 '18 at 5:11
add a comment |
$begingroup$
Decompose:
$$frac{1}{16-x^2}=frac{1}{(4-x)(4+x)}=frac18left[frac1{4-x}+frac1{4+x}right]$$
Expand each term separately:
$$begin{align}f(9)&=frac1{4-9}=-frac15; \
f'(9)&=frac1{(4-9)^2}=frac1{5^2};\
f''(9)&=-frac2{(4-9)^3}=-frac2{5^3};\
&vdots\
frac1{4-x}&=-frac15+frac{1}{1!cdot 5^2}(x-9)-frac2{2!cdot 5^3}(x-9)^2+cdots+(-1)^{n+1}frac{(n-1)!}{(n-1)!cdot 5^{n+1}}(x-9)^n+cdots\
=====&========================================== \
f(9)&=frac1{4+9}=frac1{13};\
f'(9)&=-frac1{(4+9)^2}=-frac1{13^2};\
f''(9)&=frac2{(4+9)^3}=frac2{13^3};\
&vdots\
frac1{4+x}&=frac1{13}-frac{1}{1!cdot 13^2}(x-9)+frac2{2!cdot 13^3}(x-9)^3+cdots+(-1)^nfrac{(n-1)!}{(n-1)!cdot 13^{n+1}}(x-9)^n+cdots\
end{align}$$
Hence:
$$begin{align}frac1{16-x^2}&=frac18left[sum_{n=0}^{infty} frac{(-1)^{n+1}}{5^{n+1}}(x-9)^n+sum_{n=0}^{infty} frac{(-1)^{n}}{13^{n+1}}(x-9)^nright]=\
&=frac18sum_{n=0}^{infty} frac{1}{65^{n+1}}left[(-1)^{n+1}13^{n+1}+(-1)^n5^{n+1}right](x-9)^n=\
&=frac18sum_{n=0}^{infty} 65^{-n-1}left[(-13)^{n+1}+(-1)^n5^{n+1}right](x-9)^n.
end{align}$$
See WolframAlpha's answer.
$endgroup$
add a comment |
$begingroup$
Decompose:
$$frac{1}{16-x^2}=frac{1}{(4-x)(4+x)}=frac18left[frac1{4-x}+frac1{4+x}right]$$
Expand each term separately:
$$begin{align}f(9)&=frac1{4-9}=-frac15; \
f'(9)&=frac1{(4-9)^2}=frac1{5^2};\
f''(9)&=-frac2{(4-9)^3}=-frac2{5^3};\
&vdots\
frac1{4-x}&=-frac15+frac{1}{1!cdot 5^2}(x-9)-frac2{2!cdot 5^3}(x-9)^2+cdots+(-1)^{n+1}frac{(n-1)!}{(n-1)!cdot 5^{n+1}}(x-9)^n+cdots\
=====&========================================== \
f(9)&=frac1{4+9}=frac1{13};\
f'(9)&=-frac1{(4+9)^2}=-frac1{13^2};\
f''(9)&=frac2{(4+9)^3}=frac2{13^3};\
&vdots\
frac1{4+x}&=frac1{13}-frac{1}{1!cdot 13^2}(x-9)+frac2{2!cdot 13^3}(x-9)^3+cdots+(-1)^nfrac{(n-1)!}{(n-1)!cdot 13^{n+1}}(x-9)^n+cdots\
end{align}$$
Hence:
$$begin{align}frac1{16-x^2}&=frac18left[sum_{n=0}^{infty} frac{(-1)^{n+1}}{5^{n+1}}(x-9)^n+sum_{n=0}^{infty} frac{(-1)^{n}}{13^{n+1}}(x-9)^nright]=\
&=frac18sum_{n=0}^{infty} frac{1}{65^{n+1}}left[(-1)^{n+1}13^{n+1}+(-1)^n5^{n+1}right](x-9)^n=\
&=frac18sum_{n=0}^{infty} 65^{-n-1}left[(-13)^{n+1}+(-1)^n5^{n+1}right](x-9)^n.
end{align}$$
See WolframAlpha's answer.
$endgroup$
add a comment |
$begingroup$
Decompose:
$$frac{1}{16-x^2}=frac{1}{(4-x)(4+x)}=frac18left[frac1{4-x}+frac1{4+x}right]$$
Expand each term separately:
$$begin{align}f(9)&=frac1{4-9}=-frac15; \
f'(9)&=frac1{(4-9)^2}=frac1{5^2};\
f''(9)&=-frac2{(4-9)^3}=-frac2{5^3};\
&vdots\
frac1{4-x}&=-frac15+frac{1}{1!cdot 5^2}(x-9)-frac2{2!cdot 5^3}(x-9)^2+cdots+(-1)^{n+1}frac{(n-1)!}{(n-1)!cdot 5^{n+1}}(x-9)^n+cdots\
=====&========================================== \
f(9)&=frac1{4+9}=frac1{13};\
f'(9)&=-frac1{(4+9)^2}=-frac1{13^2};\
f''(9)&=frac2{(4+9)^3}=frac2{13^3};\
&vdots\
frac1{4+x}&=frac1{13}-frac{1}{1!cdot 13^2}(x-9)+frac2{2!cdot 13^3}(x-9)^3+cdots+(-1)^nfrac{(n-1)!}{(n-1)!cdot 13^{n+1}}(x-9)^n+cdots\
end{align}$$
Hence:
$$begin{align}frac1{16-x^2}&=frac18left[sum_{n=0}^{infty} frac{(-1)^{n+1}}{5^{n+1}}(x-9)^n+sum_{n=0}^{infty} frac{(-1)^{n}}{13^{n+1}}(x-9)^nright]=\
&=frac18sum_{n=0}^{infty} frac{1}{65^{n+1}}left[(-1)^{n+1}13^{n+1}+(-1)^n5^{n+1}right](x-9)^n=\
&=frac18sum_{n=0}^{infty} 65^{-n-1}left[(-13)^{n+1}+(-1)^n5^{n+1}right](x-9)^n.
end{align}$$
See WolframAlpha's answer.
$endgroup$
Decompose:
$$frac{1}{16-x^2}=frac{1}{(4-x)(4+x)}=frac18left[frac1{4-x}+frac1{4+x}right]$$
Expand each term separately:
$$begin{align}f(9)&=frac1{4-9}=-frac15; \
f'(9)&=frac1{(4-9)^2}=frac1{5^2};\
f''(9)&=-frac2{(4-9)^3}=-frac2{5^3};\
&vdots\
frac1{4-x}&=-frac15+frac{1}{1!cdot 5^2}(x-9)-frac2{2!cdot 5^3}(x-9)^2+cdots+(-1)^{n+1}frac{(n-1)!}{(n-1)!cdot 5^{n+1}}(x-9)^n+cdots\
=====&========================================== \
f(9)&=frac1{4+9}=frac1{13};\
f'(9)&=-frac1{(4+9)^2}=-frac1{13^2};\
f''(9)&=frac2{(4+9)^3}=frac2{13^3};\
&vdots\
frac1{4+x}&=frac1{13}-frac{1}{1!cdot 13^2}(x-9)+frac2{2!cdot 13^3}(x-9)^3+cdots+(-1)^nfrac{(n-1)!}{(n-1)!cdot 13^{n+1}}(x-9)^n+cdots\
end{align}$$
Hence:
$$begin{align}frac1{16-x^2}&=frac18left[sum_{n=0}^{infty} frac{(-1)^{n+1}}{5^{n+1}}(x-9)^n+sum_{n=0}^{infty} frac{(-1)^{n}}{13^{n+1}}(x-9)^nright]=\
&=frac18sum_{n=0}^{infty} frac{1}{65^{n+1}}left[(-1)^{n+1}13^{n+1}+(-1)^n5^{n+1}right](x-9)^n=\
&=frac18sum_{n=0}^{infty} 65^{-n-1}left[(-13)^{n+1}+(-1)^n5^{n+1}right](x-9)^n.
end{align}$$
See WolframAlpha's answer.
answered Dec 11 '18 at 15:17
farruhotafarruhota
20.4k2739
20.4k2739
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034758%2fhow-to-find-the-taylor-series-for-fx-frac116-x2-centered-at-9-in-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown