Does such a test function exist?
$begingroup$
Is there a nonnegative test function $phi$ in $mathbb{R}^{n}$ such that
$Deltaphi(x/n)toDeltaphi(0) $ uniformly on bounded sets, as $ntoinfty$ ($Delta$ is the laplacian)
$Deltaphi(0) $ is not zero?
real-analysis distribution-theory
$endgroup$
|
show 1 more comment
$begingroup$
Is there a nonnegative test function $phi$ in $mathbb{R}^{n}$ such that
$Deltaphi(x/n)toDeltaphi(0) $ uniformly on bounded sets, as $ntoinfty$ ($Delta$ is the laplacian)
$Deltaphi(0) $ is not zero?
real-analysis distribution-theory
$endgroup$
$begingroup$
how can a function be in $mathbb{R}^n$?
$endgroup$
– gt6989b
Dec 18 '18 at 19:50
$begingroup$
This is hard to read. here is a good tutorial on formatting for this site.
$endgroup$
– lulu
Dec 18 '18 at 19:52
$begingroup$
lulu. Sorry! Bernard. Thanks for correction. gty98b. This is a smooth function with compact support.
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:03
1
$begingroup$
Any test function with $Delta phi(0)ne 0$ is an example (PS: you are using $n$ in different ways)
$endgroup$
– zhw.
Dec 18 '18 at 20:14
$begingroup$
But why the convergence whould be uniform?
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:49
|
show 1 more comment
$begingroup$
Is there a nonnegative test function $phi$ in $mathbb{R}^{n}$ such that
$Deltaphi(x/n)toDeltaphi(0) $ uniformly on bounded sets, as $ntoinfty$ ($Delta$ is the laplacian)
$Deltaphi(0) $ is not zero?
real-analysis distribution-theory
$endgroup$
Is there a nonnegative test function $phi$ in $mathbb{R}^{n}$ such that
$Deltaphi(x/n)toDeltaphi(0) $ uniformly on bounded sets, as $ntoinfty$ ($Delta$ is the laplacian)
$Deltaphi(0) $ is not zero?
real-analysis distribution-theory
real-analysis distribution-theory
edited Dec 18 '18 at 19:55
Bernard
123k741117
123k741117
asked Dec 18 '18 at 19:48
M. RahmatM. Rahmat
291212
291212
$begingroup$
how can a function be in $mathbb{R}^n$?
$endgroup$
– gt6989b
Dec 18 '18 at 19:50
$begingroup$
This is hard to read. here is a good tutorial on formatting for this site.
$endgroup$
– lulu
Dec 18 '18 at 19:52
$begingroup$
lulu. Sorry! Bernard. Thanks for correction. gty98b. This is a smooth function with compact support.
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:03
1
$begingroup$
Any test function with $Delta phi(0)ne 0$ is an example (PS: you are using $n$ in different ways)
$endgroup$
– zhw.
Dec 18 '18 at 20:14
$begingroup$
But why the convergence whould be uniform?
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:49
|
show 1 more comment
$begingroup$
how can a function be in $mathbb{R}^n$?
$endgroup$
– gt6989b
Dec 18 '18 at 19:50
$begingroup$
This is hard to read. here is a good tutorial on formatting for this site.
$endgroup$
– lulu
Dec 18 '18 at 19:52
$begingroup$
lulu. Sorry! Bernard. Thanks for correction. gty98b. This is a smooth function with compact support.
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:03
1
$begingroup$
Any test function with $Delta phi(0)ne 0$ is an example (PS: you are using $n$ in different ways)
$endgroup$
– zhw.
Dec 18 '18 at 20:14
$begingroup$
But why the convergence whould be uniform?
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:49
$begingroup$
how can a function be in $mathbb{R}^n$?
$endgroup$
– gt6989b
Dec 18 '18 at 19:50
$begingroup$
how can a function be in $mathbb{R}^n$?
$endgroup$
– gt6989b
Dec 18 '18 at 19:50
$begingroup$
This is hard to read. here is a good tutorial on formatting for this site.
$endgroup$
– lulu
Dec 18 '18 at 19:52
$begingroup$
This is hard to read. here is a good tutorial on formatting for this site.
$endgroup$
– lulu
Dec 18 '18 at 19:52
$begingroup$
lulu. Sorry! Bernard. Thanks for correction. gty98b. This is a smooth function with compact support.
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:03
$begingroup$
lulu. Sorry! Bernard. Thanks for correction. gty98b. This is a smooth function with compact support.
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:03
1
1
$begingroup$
Any test function with $Delta phi(0)ne 0$ is an example (PS: you are using $n$ in different ways)
$endgroup$
– zhw.
Dec 18 '18 at 20:14
$begingroup$
Any test function with $Delta phi(0)ne 0$ is an example (PS: you are using $n$ in different ways)
$endgroup$
– zhw.
Dec 18 '18 at 20:14
$begingroup$
But why the convergence whould be uniform?
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:49
$begingroup$
But why the convergence whould be uniform?
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:49
|
show 1 more comment
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045615%2fdoes-such-a-test-function-exist%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045615%2fdoes-such-a-test-function-exist%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
how can a function be in $mathbb{R}^n$?
$endgroup$
– gt6989b
Dec 18 '18 at 19:50
$begingroup$
This is hard to read. here is a good tutorial on formatting for this site.
$endgroup$
– lulu
Dec 18 '18 at 19:52
$begingroup$
lulu. Sorry! Bernard. Thanks for correction. gty98b. This is a smooth function with compact support.
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:03
1
$begingroup$
Any test function with $Delta phi(0)ne 0$ is an example (PS: you are using $n$ in different ways)
$endgroup$
– zhw.
Dec 18 '18 at 20:14
$begingroup$
But why the convergence whould be uniform?
$endgroup$
– M. Rahmat
Dec 18 '18 at 20:49