If $f(y)=limsup_k|y-x_k|^2$ then $f$ is a strictly convex function












0












$begingroup$


Let $y in mathbb{R^n}$, and $(x_k)_{kin mathbb{N}}$ a sequence in $ mathbb{R^n}$ and $f(y)=limsup_k|y-x_k|^2$ ($|{cdot}|$ is the euclidean norm).



Then $f$ is a convex function.



But how can we prove that $f$ is a strictly convex function ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $f(y)$ could be $infty$ everywhere
    $endgroup$
    – LinAlg
    Dec 18 '18 at 19:49










  • $begingroup$
    Why don't you show your proof for (weak) convexity? Then we can try to point out where you can replace $le$ by $<$.
    $endgroup$
    – Martin R
    Dec 18 '18 at 19:49


















0












$begingroup$


Let $y in mathbb{R^n}$, and $(x_k)_{kin mathbb{N}}$ a sequence in $ mathbb{R^n}$ and $f(y)=limsup_k|y-x_k|^2$ ($|{cdot}|$ is the euclidean norm).



Then $f$ is a convex function.



But how can we prove that $f$ is a strictly convex function ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $f(y)$ could be $infty$ everywhere
    $endgroup$
    – LinAlg
    Dec 18 '18 at 19:49










  • $begingroup$
    Why don't you show your proof for (weak) convexity? Then we can try to point out where you can replace $le$ by $<$.
    $endgroup$
    – Martin R
    Dec 18 '18 at 19:49
















0












0








0





$begingroup$


Let $y in mathbb{R^n}$, and $(x_k)_{kin mathbb{N}}$ a sequence in $ mathbb{R^n}$ and $f(y)=limsup_k|y-x_k|^2$ ($|{cdot}|$ is the euclidean norm).



Then $f$ is a convex function.



But how can we prove that $f$ is a strictly convex function ?










share|cite|improve this question











$endgroup$




Let $y in mathbb{R^n}$, and $(x_k)_{kin mathbb{N}}$ a sequence in $ mathbb{R^n}$ and $f(y)=limsup_k|y-x_k|^2$ ($|{cdot}|$ is the euclidean norm).



Then $f$ is a convex function.



But how can we prove that $f$ is a strictly convex function ?







convex-analysis convex-optimization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 18 '18 at 19:41









Masacroso

13.1k41747




13.1k41747










asked Dec 18 '18 at 19:38









Anas BOUALIIAnas BOUALII

1388




1388












  • $begingroup$
    $f(y)$ could be $infty$ everywhere
    $endgroup$
    – LinAlg
    Dec 18 '18 at 19:49










  • $begingroup$
    Why don't you show your proof for (weak) convexity? Then we can try to point out where you can replace $le$ by $<$.
    $endgroup$
    – Martin R
    Dec 18 '18 at 19:49




















  • $begingroup$
    $f(y)$ could be $infty$ everywhere
    $endgroup$
    – LinAlg
    Dec 18 '18 at 19:49










  • $begingroup$
    Why don't you show your proof for (weak) convexity? Then we can try to point out where you can replace $le$ by $<$.
    $endgroup$
    – Martin R
    Dec 18 '18 at 19:49


















$begingroup$
$f(y)$ could be $infty$ everywhere
$endgroup$
– LinAlg
Dec 18 '18 at 19:49




$begingroup$
$f(y)$ could be $infty$ everywhere
$endgroup$
– LinAlg
Dec 18 '18 at 19:49












$begingroup$
Why don't you show your proof for (weak) convexity? Then we can try to point out where you can replace $le$ by $<$.
$endgroup$
– Martin R
Dec 18 '18 at 19:49






$begingroup$
Why don't you show your proof for (weak) convexity? Then we can try to point out where you can replace $le$ by $<$.
$endgroup$
– Martin R
Dec 18 '18 at 19:49












2 Answers
2






active

oldest

votes


















2












$begingroup$

I'm assuming that $(x_k)$ is a bounded sequence, so that $f(y)$ is finite for all $y in Bbb R$.



Generally, for $a, b in Bbb R^n$ and $lambda in Bbb R$ we have, with $cdot$ denoting the scalar product:
$$
Vert lambda a + (1-lambda) b Vert^2 = lambda^2 Vert a Vert^2 + 2 lambda(1-lambda) (a cdot b)+ lambda^2 Vert b Vert^2 \
= lambda Vert a Vert^2 + lambda Vert b Vert^2 - lambda (1-lambda)left( Vert a Vert^2 - 2 (a cdot b)+ Vert b Vert^2 right)\
= lambda Vert a Vert^2 + lambda Vert b Vert^2 - lambda (1-lambda) Vert a-b Vert^2 , .
$$



Now let $y, z in Bbb R^n$, $y ne z$, and $0<lambda< 1$. For all $k$ we have
$$
Vert lambda y + (1-lambda) z - x_k Vert^2 =
Vert lambda(y-x_k) + (1-lambda) (z-x_k) Vert^2 \
= lambda Vert y-x_k Vert^2 + (1-lambda) Vert z-x_k Vert^2
- lambda (1-lambda) Vert y-z Vert^2 , .
$$

It follows that
$$
f(lambda y + (1-lambda) z) le lambda f(y) + (1-lambda) f(z) - lambda (1-lambda) Vert y-z Vert^2 \
< lambda f(y) + (1-lambda) f(z), .
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Why $f(y)=f(z)=0$ otherwise ?
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:18










  • $begingroup$
    @AnasBOUALII: My original answer was indeed wrong. – Have a look at the new version, it should be correct now.
    $endgroup$
    – Martin R
    Dec 19 '18 at 2:40










  • $begingroup$
    yeah, well i didnt get the second identity used, where u took $z$ diffrent from $y$.
    $endgroup$
    – Anas BOUALII
    Dec 19 '18 at 15:35












  • $begingroup$
    @AnasBOUALII: I have applied the first identity with $a = y-x_k$ and $b=z-x_k$.
    $endgroup$
    – Martin R
    Dec 19 '18 at 15:58










  • $begingroup$
    yeah that s obvious, but I asked how we prove it wasnt clair at first(the identity).
    $endgroup$
    – Anas BOUALII
    Dec 19 '18 at 18:34



















0












$begingroup$

we first prove that $g_k(x)=||x-x_k||^2$ is a convex function.



Then we will have $g_k(tx+(1-t)y)leq tg_k(x)+(1-t)g_k(y)$ for all $tin [0,1] $ and $x,yin mathbb{R^n}.$



which means $$||tx+(1-t)y-x_k|| leq ||x-x_k||+ ||y-x_k||$$



then $$limsup_k||tx+(1-t)y-x_k|| leq limsup_k||x-x_k||+ limsup_k||y-x_k||$$
Hence, $f$ is convex.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    But after we pass to the limit all strict inequality become $leq$.
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:03






  • 1




    $begingroup$
    @Masacroso: Anas is the OP. This might be a misunderstanding from my above comment. What I meant is that Anas adds his/her proof of weak convexity to the question.
    $endgroup$
    – Martin R
    Dec 18 '18 at 20:05










  • $begingroup$
    @Martin lol, thanks, I didnt noticed. Yes, this must be written in the text body of the original question
    $endgroup$
    – Masacroso
    Dec 18 '18 at 20:07










  • $begingroup$
    This is not a complete ''answer", just the convexity of $f$.
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:09












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045601%2fif-fy-limsup-k-y-x-k-2-then-f-is-a-strictly-convex-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

I'm assuming that $(x_k)$ is a bounded sequence, so that $f(y)$ is finite for all $y in Bbb R$.



Generally, for $a, b in Bbb R^n$ and $lambda in Bbb R$ we have, with $cdot$ denoting the scalar product:
$$
Vert lambda a + (1-lambda) b Vert^2 = lambda^2 Vert a Vert^2 + 2 lambda(1-lambda) (a cdot b)+ lambda^2 Vert b Vert^2 \
= lambda Vert a Vert^2 + lambda Vert b Vert^2 - lambda (1-lambda)left( Vert a Vert^2 - 2 (a cdot b)+ Vert b Vert^2 right)\
= lambda Vert a Vert^2 + lambda Vert b Vert^2 - lambda (1-lambda) Vert a-b Vert^2 , .
$$



Now let $y, z in Bbb R^n$, $y ne z$, and $0<lambda< 1$. For all $k$ we have
$$
Vert lambda y + (1-lambda) z - x_k Vert^2 =
Vert lambda(y-x_k) + (1-lambda) (z-x_k) Vert^2 \
= lambda Vert y-x_k Vert^2 + (1-lambda) Vert z-x_k Vert^2
- lambda (1-lambda) Vert y-z Vert^2 , .
$$

It follows that
$$
f(lambda y + (1-lambda) z) le lambda f(y) + (1-lambda) f(z) - lambda (1-lambda) Vert y-z Vert^2 \
< lambda f(y) + (1-lambda) f(z), .
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Why $f(y)=f(z)=0$ otherwise ?
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:18










  • $begingroup$
    @AnasBOUALII: My original answer was indeed wrong. – Have a look at the new version, it should be correct now.
    $endgroup$
    – Martin R
    Dec 19 '18 at 2:40










  • $begingroup$
    yeah, well i didnt get the second identity used, where u took $z$ diffrent from $y$.
    $endgroup$
    – Anas BOUALII
    Dec 19 '18 at 15:35












  • $begingroup$
    @AnasBOUALII: I have applied the first identity with $a = y-x_k$ and $b=z-x_k$.
    $endgroup$
    – Martin R
    Dec 19 '18 at 15:58










  • $begingroup$
    yeah that s obvious, but I asked how we prove it wasnt clair at first(the identity).
    $endgroup$
    – Anas BOUALII
    Dec 19 '18 at 18:34
















2












$begingroup$

I'm assuming that $(x_k)$ is a bounded sequence, so that $f(y)$ is finite for all $y in Bbb R$.



Generally, for $a, b in Bbb R^n$ and $lambda in Bbb R$ we have, with $cdot$ denoting the scalar product:
$$
Vert lambda a + (1-lambda) b Vert^2 = lambda^2 Vert a Vert^2 + 2 lambda(1-lambda) (a cdot b)+ lambda^2 Vert b Vert^2 \
= lambda Vert a Vert^2 + lambda Vert b Vert^2 - lambda (1-lambda)left( Vert a Vert^2 - 2 (a cdot b)+ Vert b Vert^2 right)\
= lambda Vert a Vert^2 + lambda Vert b Vert^2 - lambda (1-lambda) Vert a-b Vert^2 , .
$$



Now let $y, z in Bbb R^n$, $y ne z$, and $0<lambda< 1$. For all $k$ we have
$$
Vert lambda y + (1-lambda) z - x_k Vert^2 =
Vert lambda(y-x_k) + (1-lambda) (z-x_k) Vert^2 \
= lambda Vert y-x_k Vert^2 + (1-lambda) Vert z-x_k Vert^2
- lambda (1-lambda) Vert y-z Vert^2 , .
$$

It follows that
$$
f(lambda y + (1-lambda) z) le lambda f(y) + (1-lambda) f(z) - lambda (1-lambda) Vert y-z Vert^2 \
< lambda f(y) + (1-lambda) f(z), .
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Why $f(y)=f(z)=0$ otherwise ?
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:18










  • $begingroup$
    @AnasBOUALII: My original answer was indeed wrong. – Have a look at the new version, it should be correct now.
    $endgroup$
    – Martin R
    Dec 19 '18 at 2:40










  • $begingroup$
    yeah, well i didnt get the second identity used, where u took $z$ diffrent from $y$.
    $endgroup$
    – Anas BOUALII
    Dec 19 '18 at 15:35












  • $begingroup$
    @AnasBOUALII: I have applied the first identity with $a = y-x_k$ and $b=z-x_k$.
    $endgroup$
    – Martin R
    Dec 19 '18 at 15:58










  • $begingroup$
    yeah that s obvious, but I asked how we prove it wasnt clair at first(the identity).
    $endgroup$
    – Anas BOUALII
    Dec 19 '18 at 18:34














2












2








2





$begingroup$

I'm assuming that $(x_k)$ is a bounded sequence, so that $f(y)$ is finite for all $y in Bbb R$.



Generally, for $a, b in Bbb R^n$ and $lambda in Bbb R$ we have, with $cdot$ denoting the scalar product:
$$
Vert lambda a + (1-lambda) b Vert^2 = lambda^2 Vert a Vert^2 + 2 lambda(1-lambda) (a cdot b)+ lambda^2 Vert b Vert^2 \
= lambda Vert a Vert^2 + lambda Vert b Vert^2 - lambda (1-lambda)left( Vert a Vert^2 - 2 (a cdot b)+ Vert b Vert^2 right)\
= lambda Vert a Vert^2 + lambda Vert b Vert^2 - lambda (1-lambda) Vert a-b Vert^2 , .
$$



Now let $y, z in Bbb R^n$, $y ne z$, and $0<lambda< 1$. For all $k$ we have
$$
Vert lambda y + (1-lambda) z - x_k Vert^2 =
Vert lambda(y-x_k) + (1-lambda) (z-x_k) Vert^2 \
= lambda Vert y-x_k Vert^2 + (1-lambda) Vert z-x_k Vert^2
- lambda (1-lambda) Vert y-z Vert^2 , .
$$

It follows that
$$
f(lambda y + (1-lambda) z) le lambda f(y) + (1-lambda) f(z) - lambda (1-lambda) Vert y-z Vert^2 \
< lambda f(y) + (1-lambda) f(z), .
$$






share|cite|improve this answer











$endgroup$



I'm assuming that $(x_k)$ is a bounded sequence, so that $f(y)$ is finite for all $y in Bbb R$.



Generally, for $a, b in Bbb R^n$ and $lambda in Bbb R$ we have, with $cdot$ denoting the scalar product:
$$
Vert lambda a + (1-lambda) b Vert^2 = lambda^2 Vert a Vert^2 + 2 lambda(1-lambda) (a cdot b)+ lambda^2 Vert b Vert^2 \
= lambda Vert a Vert^2 + lambda Vert b Vert^2 - lambda (1-lambda)left( Vert a Vert^2 - 2 (a cdot b)+ Vert b Vert^2 right)\
= lambda Vert a Vert^2 + lambda Vert b Vert^2 - lambda (1-lambda) Vert a-b Vert^2 , .
$$



Now let $y, z in Bbb R^n$, $y ne z$, and $0<lambda< 1$. For all $k$ we have
$$
Vert lambda y + (1-lambda) z - x_k Vert^2 =
Vert lambda(y-x_k) + (1-lambda) (z-x_k) Vert^2 \
= lambda Vert y-x_k Vert^2 + (1-lambda) Vert z-x_k Vert^2
- lambda (1-lambda) Vert y-z Vert^2 , .
$$

It follows that
$$
f(lambda y + (1-lambda) z) le lambda f(y) + (1-lambda) f(z) - lambda (1-lambda) Vert y-z Vert^2 \
< lambda f(y) + (1-lambda) f(z), .
$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 19 '18 at 20:49

























answered Dec 18 '18 at 20:10









Martin RMartin R

30.5k33558




30.5k33558












  • $begingroup$
    Why $f(y)=f(z)=0$ otherwise ?
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:18










  • $begingroup$
    @AnasBOUALII: My original answer was indeed wrong. – Have a look at the new version, it should be correct now.
    $endgroup$
    – Martin R
    Dec 19 '18 at 2:40










  • $begingroup$
    yeah, well i didnt get the second identity used, where u took $z$ diffrent from $y$.
    $endgroup$
    – Anas BOUALII
    Dec 19 '18 at 15:35












  • $begingroup$
    @AnasBOUALII: I have applied the first identity with $a = y-x_k$ and $b=z-x_k$.
    $endgroup$
    – Martin R
    Dec 19 '18 at 15:58










  • $begingroup$
    yeah that s obvious, but I asked how we prove it wasnt clair at first(the identity).
    $endgroup$
    – Anas BOUALII
    Dec 19 '18 at 18:34


















  • $begingroup$
    Why $f(y)=f(z)=0$ otherwise ?
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:18










  • $begingroup$
    @AnasBOUALII: My original answer was indeed wrong. – Have a look at the new version, it should be correct now.
    $endgroup$
    – Martin R
    Dec 19 '18 at 2:40










  • $begingroup$
    yeah, well i didnt get the second identity used, where u took $z$ diffrent from $y$.
    $endgroup$
    – Anas BOUALII
    Dec 19 '18 at 15:35












  • $begingroup$
    @AnasBOUALII: I have applied the first identity with $a = y-x_k$ and $b=z-x_k$.
    $endgroup$
    – Martin R
    Dec 19 '18 at 15:58










  • $begingroup$
    yeah that s obvious, but I asked how we prove it wasnt clair at first(the identity).
    $endgroup$
    – Anas BOUALII
    Dec 19 '18 at 18:34
















$begingroup$
Why $f(y)=f(z)=0$ otherwise ?
$endgroup$
– Anas BOUALII
Dec 18 '18 at 20:18




$begingroup$
Why $f(y)=f(z)=0$ otherwise ?
$endgroup$
– Anas BOUALII
Dec 18 '18 at 20:18












$begingroup$
@AnasBOUALII: My original answer was indeed wrong. – Have a look at the new version, it should be correct now.
$endgroup$
– Martin R
Dec 19 '18 at 2:40




$begingroup$
@AnasBOUALII: My original answer was indeed wrong. – Have a look at the new version, it should be correct now.
$endgroup$
– Martin R
Dec 19 '18 at 2:40












$begingroup$
yeah, well i didnt get the second identity used, where u took $z$ diffrent from $y$.
$endgroup$
– Anas BOUALII
Dec 19 '18 at 15:35






$begingroup$
yeah, well i didnt get the second identity used, where u took $z$ diffrent from $y$.
$endgroup$
– Anas BOUALII
Dec 19 '18 at 15:35














$begingroup$
@AnasBOUALII: I have applied the first identity with $a = y-x_k$ and $b=z-x_k$.
$endgroup$
– Martin R
Dec 19 '18 at 15:58




$begingroup$
@AnasBOUALII: I have applied the first identity with $a = y-x_k$ and $b=z-x_k$.
$endgroup$
– Martin R
Dec 19 '18 at 15:58












$begingroup$
yeah that s obvious, but I asked how we prove it wasnt clair at first(the identity).
$endgroup$
– Anas BOUALII
Dec 19 '18 at 18:34




$begingroup$
yeah that s obvious, but I asked how we prove it wasnt clair at first(the identity).
$endgroup$
– Anas BOUALII
Dec 19 '18 at 18:34











0












$begingroup$

we first prove that $g_k(x)=||x-x_k||^2$ is a convex function.



Then we will have $g_k(tx+(1-t)y)leq tg_k(x)+(1-t)g_k(y)$ for all $tin [0,1] $ and $x,yin mathbb{R^n}.$



which means $$||tx+(1-t)y-x_k|| leq ||x-x_k||+ ||y-x_k||$$



then $$limsup_k||tx+(1-t)y-x_k|| leq limsup_k||x-x_k||+ limsup_k||y-x_k||$$
Hence, $f$ is convex.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    But after we pass to the limit all strict inequality become $leq$.
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:03






  • 1




    $begingroup$
    @Masacroso: Anas is the OP. This might be a misunderstanding from my above comment. What I meant is that Anas adds his/her proof of weak convexity to the question.
    $endgroup$
    – Martin R
    Dec 18 '18 at 20:05










  • $begingroup$
    @Martin lol, thanks, I didnt noticed. Yes, this must be written in the text body of the original question
    $endgroup$
    – Masacroso
    Dec 18 '18 at 20:07










  • $begingroup$
    This is not a complete ''answer", just the convexity of $f$.
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:09
















0












$begingroup$

we first prove that $g_k(x)=||x-x_k||^2$ is a convex function.



Then we will have $g_k(tx+(1-t)y)leq tg_k(x)+(1-t)g_k(y)$ for all $tin [0,1] $ and $x,yin mathbb{R^n}.$



which means $$||tx+(1-t)y-x_k|| leq ||x-x_k||+ ||y-x_k||$$



then $$limsup_k||tx+(1-t)y-x_k|| leq limsup_k||x-x_k||+ limsup_k||y-x_k||$$
Hence, $f$ is convex.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    But after we pass to the limit all strict inequality become $leq$.
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:03






  • 1




    $begingroup$
    @Masacroso: Anas is the OP. This might be a misunderstanding from my above comment. What I meant is that Anas adds his/her proof of weak convexity to the question.
    $endgroup$
    – Martin R
    Dec 18 '18 at 20:05










  • $begingroup$
    @Martin lol, thanks, I didnt noticed. Yes, this must be written in the text body of the original question
    $endgroup$
    – Masacroso
    Dec 18 '18 at 20:07










  • $begingroup$
    This is not a complete ''answer", just the convexity of $f$.
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:09














0












0








0





$begingroup$

we first prove that $g_k(x)=||x-x_k||^2$ is a convex function.



Then we will have $g_k(tx+(1-t)y)leq tg_k(x)+(1-t)g_k(y)$ for all $tin [0,1] $ and $x,yin mathbb{R^n}.$



which means $$||tx+(1-t)y-x_k|| leq ||x-x_k||+ ||y-x_k||$$



then $$limsup_k||tx+(1-t)y-x_k|| leq limsup_k||x-x_k||+ limsup_k||y-x_k||$$
Hence, $f$ is convex.






share|cite|improve this answer









$endgroup$



we first prove that $g_k(x)=||x-x_k||^2$ is a convex function.



Then we will have $g_k(tx+(1-t)y)leq tg_k(x)+(1-t)g_k(y)$ for all $tin [0,1] $ and $x,yin mathbb{R^n}.$



which means $$||tx+(1-t)y-x_k|| leq ||x-x_k||+ ||y-x_k||$$



then $$limsup_k||tx+(1-t)y-x_k|| leq limsup_k||x-x_k||+ limsup_k||y-x_k||$$
Hence, $f$ is convex.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 18 '18 at 19:59









Anas BOUALIIAnas BOUALII

1388




1388












  • $begingroup$
    But after we pass to the limit all strict inequality become $leq$.
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:03






  • 1




    $begingroup$
    @Masacroso: Anas is the OP. This might be a misunderstanding from my above comment. What I meant is that Anas adds his/her proof of weak convexity to the question.
    $endgroup$
    – Martin R
    Dec 18 '18 at 20:05










  • $begingroup$
    @Martin lol, thanks, I didnt noticed. Yes, this must be written in the text body of the original question
    $endgroup$
    – Masacroso
    Dec 18 '18 at 20:07










  • $begingroup$
    This is not a complete ''answer", just the convexity of $f$.
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:09


















  • $begingroup$
    But after we pass to the limit all strict inequality become $leq$.
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:03






  • 1




    $begingroup$
    @Masacroso: Anas is the OP. This might be a misunderstanding from my above comment. What I meant is that Anas adds his/her proof of weak convexity to the question.
    $endgroup$
    – Martin R
    Dec 18 '18 at 20:05










  • $begingroup$
    @Martin lol, thanks, I didnt noticed. Yes, this must be written in the text body of the original question
    $endgroup$
    – Masacroso
    Dec 18 '18 at 20:07










  • $begingroup$
    This is not a complete ''answer", just the convexity of $f$.
    $endgroup$
    – Anas BOUALII
    Dec 18 '18 at 20:09
















$begingroup$
But after we pass to the limit all strict inequality become $leq$.
$endgroup$
– Anas BOUALII
Dec 18 '18 at 20:03




$begingroup$
But after we pass to the limit all strict inequality become $leq$.
$endgroup$
– Anas BOUALII
Dec 18 '18 at 20:03




1




1




$begingroup$
@Masacroso: Anas is the OP. This might be a misunderstanding from my above comment. What I meant is that Anas adds his/her proof of weak convexity to the question.
$endgroup$
– Martin R
Dec 18 '18 at 20:05




$begingroup$
@Masacroso: Anas is the OP. This might be a misunderstanding from my above comment. What I meant is that Anas adds his/her proof of weak convexity to the question.
$endgroup$
– Martin R
Dec 18 '18 at 20:05












$begingroup$
@Martin lol, thanks, I didnt noticed. Yes, this must be written in the text body of the original question
$endgroup$
– Masacroso
Dec 18 '18 at 20:07




$begingroup$
@Martin lol, thanks, I didnt noticed. Yes, this must be written in the text body of the original question
$endgroup$
– Masacroso
Dec 18 '18 at 20:07












$begingroup$
This is not a complete ''answer", just the convexity of $f$.
$endgroup$
– Anas BOUALII
Dec 18 '18 at 20:09




$begingroup$
This is not a complete ''answer", just the convexity of $f$.
$endgroup$
– Anas BOUALII
Dec 18 '18 at 20:09


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045601%2fif-fy-limsup-k-y-x-k-2-then-f-is-a-strictly-convex-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa