General Solution for Partial Differential Equation
$begingroup$
To be honest I'm a bit lost on this, and I would like to get a hint or something that can help me, thanks.
I need to find the general solution $U(x,y,z)$ of the next equation:
$$U_{xx}+U_{yy}+4U_{zz}-2U_{xy}+4U_{xz}-4U_{yz}=xyz$$
I know that most sure exists a change of variable that would help to solve the equation, but I don't know how to find it, our teacher of Multivariable Calculus asked to solve this.
Thanks!
multivariable-calculus partial-derivative
$endgroup$
add a comment |
$begingroup$
To be honest I'm a bit lost on this, and I would like to get a hint or something that can help me, thanks.
I need to find the general solution $U(x,y,z)$ of the next equation:
$$U_{xx}+U_{yy}+4U_{zz}-2U_{xy}+4U_{xz}-4U_{yz}=xyz$$
I know that most sure exists a change of variable that would help to solve the equation, but I don't know how to find it, our teacher of Multivariable Calculus asked to solve this.
Thanks!
multivariable-calculus partial-derivative
$endgroup$
add a comment |
$begingroup$
To be honest I'm a bit lost on this, and I would like to get a hint or something that can help me, thanks.
I need to find the general solution $U(x,y,z)$ of the next equation:
$$U_{xx}+U_{yy}+4U_{zz}-2U_{xy}+4U_{xz}-4U_{yz}=xyz$$
I know that most sure exists a change of variable that would help to solve the equation, but I don't know how to find it, our teacher of Multivariable Calculus asked to solve this.
Thanks!
multivariable-calculus partial-derivative
$endgroup$
To be honest I'm a bit lost on this, and I would like to get a hint or something that can help me, thanks.
I need to find the general solution $U(x,y,z)$ of the next equation:
$$U_{xx}+U_{yy}+4U_{zz}-2U_{xy}+4U_{xz}-4U_{yz}=xyz$$
I know that most sure exists a change of variable that would help to solve the equation, but I don't know how to find it, our teacher of Multivariable Calculus asked to solve this.
Thanks!
multivariable-calculus partial-derivative
multivariable-calculus partial-derivative
edited Dec 18 '18 at 19:27
mathreadler
15.3k72263
15.3k72263
asked Dec 18 '18 at 19:04
GingerGinger
475
475
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This PDE is linear so it's solution can be obtained as
$$
U = U_h + U_p
$$
We have
$$
left(partial_{xx}^2+partial_{yy}^2+4partial_{zz}^2-2partial_xpartial_y + 4partial_xpartial_z-4partial_ypartial_zright)U = left(partial_x-partial_y+2partial_zright)^2U = x y z
$$
so calling
$$
V = left(partial_x-partial_y+2partial_zright)U
$$
we have
$$
left(partial_x-partial_y+2partial_zright)V = x y z
$$
using the characteristic method, we have
$$
frac{dx}{1}=frac{dy}{-1} = frac{dz}{2}
$$
giving the characteristics
$$
x+y = eta\
2y+z = xi\
2x-z = mu
$$
Choosing instead
$$
x-y = eta\
2y+z = xi\
2x-z = mu
$$
because $xi + mu = 2(x+y)$ and introducing now this change of variables into the full PDE we will obtain
$$
V_{eta}(eta ,xi ,mu )=frac{1}{64} (2 eta -mu +xi ) (-2 eta +mu +xi ) (2 eta +mu +xi )
$$
now considering $V = V_h + V_p$ this PDE can be easily solved.
$$
V_h(eta ,xi ,mu) = C_1+f(xi,mu)
$$
In this case $V_p(eta,xi,mu)$ is a polynomial form.
Finally after solving $V$ we will solve
$$
left(partial_x-partial_y+2partial_zright)U = V
$$
with the same process.
NOTE
Here
$$
V_p(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right)
$$
then
$$
V(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right) + f(xi,mu)
$$
$endgroup$
$begingroup$
So how do you turn $xyz$ into that RHS expression?
$endgroup$
– mathreadler
Dec 18 '18 at 19:20
$begingroup$
@mathreadler Linearity is a great ally!
$endgroup$
– Cesareo
Dec 18 '18 at 19:25
$begingroup$
I doubt someone just trying to start to learn it can get it if I can't get it.
$endgroup$
– mathreadler
Dec 18 '18 at 19:26
$begingroup$
@mathreadler Try to walk with shorter steps.
$endgroup$
– Cesareo
Dec 18 '18 at 19:29
$begingroup$
@mathreadler Some additional information was included. I hope it helps now.
$endgroup$
– Cesareo
Dec 18 '18 at 19:52
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045561%2fgeneral-solution-for-partial-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This PDE is linear so it's solution can be obtained as
$$
U = U_h + U_p
$$
We have
$$
left(partial_{xx}^2+partial_{yy}^2+4partial_{zz}^2-2partial_xpartial_y + 4partial_xpartial_z-4partial_ypartial_zright)U = left(partial_x-partial_y+2partial_zright)^2U = x y z
$$
so calling
$$
V = left(partial_x-partial_y+2partial_zright)U
$$
we have
$$
left(partial_x-partial_y+2partial_zright)V = x y z
$$
using the characteristic method, we have
$$
frac{dx}{1}=frac{dy}{-1} = frac{dz}{2}
$$
giving the characteristics
$$
x+y = eta\
2y+z = xi\
2x-z = mu
$$
Choosing instead
$$
x-y = eta\
2y+z = xi\
2x-z = mu
$$
because $xi + mu = 2(x+y)$ and introducing now this change of variables into the full PDE we will obtain
$$
V_{eta}(eta ,xi ,mu )=frac{1}{64} (2 eta -mu +xi ) (-2 eta +mu +xi ) (2 eta +mu +xi )
$$
now considering $V = V_h + V_p$ this PDE can be easily solved.
$$
V_h(eta ,xi ,mu) = C_1+f(xi,mu)
$$
In this case $V_p(eta,xi,mu)$ is a polynomial form.
Finally after solving $V$ we will solve
$$
left(partial_x-partial_y+2partial_zright)U = V
$$
with the same process.
NOTE
Here
$$
V_p(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right)
$$
then
$$
V(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right) + f(xi,mu)
$$
$endgroup$
$begingroup$
So how do you turn $xyz$ into that RHS expression?
$endgroup$
– mathreadler
Dec 18 '18 at 19:20
$begingroup$
@mathreadler Linearity is a great ally!
$endgroup$
– Cesareo
Dec 18 '18 at 19:25
$begingroup$
I doubt someone just trying to start to learn it can get it if I can't get it.
$endgroup$
– mathreadler
Dec 18 '18 at 19:26
$begingroup$
@mathreadler Try to walk with shorter steps.
$endgroup$
– Cesareo
Dec 18 '18 at 19:29
$begingroup$
@mathreadler Some additional information was included. I hope it helps now.
$endgroup$
– Cesareo
Dec 18 '18 at 19:52
add a comment |
$begingroup$
This PDE is linear so it's solution can be obtained as
$$
U = U_h + U_p
$$
We have
$$
left(partial_{xx}^2+partial_{yy}^2+4partial_{zz}^2-2partial_xpartial_y + 4partial_xpartial_z-4partial_ypartial_zright)U = left(partial_x-partial_y+2partial_zright)^2U = x y z
$$
so calling
$$
V = left(partial_x-partial_y+2partial_zright)U
$$
we have
$$
left(partial_x-partial_y+2partial_zright)V = x y z
$$
using the characteristic method, we have
$$
frac{dx}{1}=frac{dy}{-1} = frac{dz}{2}
$$
giving the characteristics
$$
x+y = eta\
2y+z = xi\
2x-z = mu
$$
Choosing instead
$$
x-y = eta\
2y+z = xi\
2x-z = mu
$$
because $xi + mu = 2(x+y)$ and introducing now this change of variables into the full PDE we will obtain
$$
V_{eta}(eta ,xi ,mu )=frac{1}{64} (2 eta -mu +xi ) (-2 eta +mu +xi ) (2 eta +mu +xi )
$$
now considering $V = V_h + V_p$ this PDE can be easily solved.
$$
V_h(eta ,xi ,mu) = C_1+f(xi,mu)
$$
In this case $V_p(eta,xi,mu)$ is a polynomial form.
Finally after solving $V$ we will solve
$$
left(partial_x-partial_y+2partial_zright)U = V
$$
with the same process.
NOTE
Here
$$
V_p(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right)
$$
then
$$
V(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right) + f(xi,mu)
$$
$endgroup$
$begingroup$
So how do you turn $xyz$ into that RHS expression?
$endgroup$
– mathreadler
Dec 18 '18 at 19:20
$begingroup$
@mathreadler Linearity is a great ally!
$endgroup$
– Cesareo
Dec 18 '18 at 19:25
$begingroup$
I doubt someone just trying to start to learn it can get it if I can't get it.
$endgroup$
– mathreadler
Dec 18 '18 at 19:26
$begingroup$
@mathreadler Try to walk with shorter steps.
$endgroup$
– Cesareo
Dec 18 '18 at 19:29
$begingroup$
@mathreadler Some additional information was included. I hope it helps now.
$endgroup$
– Cesareo
Dec 18 '18 at 19:52
add a comment |
$begingroup$
This PDE is linear so it's solution can be obtained as
$$
U = U_h + U_p
$$
We have
$$
left(partial_{xx}^2+partial_{yy}^2+4partial_{zz}^2-2partial_xpartial_y + 4partial_xpartial_z-4partial_ypartial_zright)U = left(partial_x-partial_y+2partial_zright)^2U = x y z
$$
so calling
$$
V = left(partial_x-partial_y+2partial_zright)U
$$
we have
$$
left(partial_x-partial_y+2partial_zright)V = x y z
$$
using the characteristic method, we have
$$
frac{dx}{1}=frac{dy}{-1} = frac{dz}{2}
$$
giving the characteristics
$$
x+y = eta\
2y+z = xi\
2x-z = mu
$$
Choosing instead
$$
x-y = eta\
2y+z = xi\
2x-z = mu
$$
because $xi + mu = 2(x+y)$ and introducing now this change of variables into the full PDE we will obtain
$$
V_{eta}(eta ,xi ,mu )=frac{1}{64} (2 eta -mu +xi ) (-2 eta +mu +xi ) (2 eta +mu +xi )
$$
now considering $V = V_h + V_p$ this PDE can be easily solved.
$$
V_h(eta ,xi ,mu) = C_1+f(xi,mu)
$$
In this case $V_p(eta,xi,mu)$ is a polynomial form.
Finally after solving $V$ we will solve
$$
left(partial_x-partial_y+2partial_zright)U = V
$$
with the same process.
NOTE
Here
$$
V_p(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right)
$$
then
$$
V(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right) + f(xi,mu)
$$
$endgroup$
This PDE is linear so it's solution can be obtained as
$$
U = U_h + U_p
$$
We have
$$
left(partial_{xx}^2+partial_{yy}^2+4partial_{zz}^2-2partial_xpartial_y + 4partial_xpartial_z-4partial_ypartial_zright)U = left(partial_x-partial_y+2partial_zright)^2U = x y z
$$
so calling
$$
V = left(partial_x-partial_y+2partial_zright)U
$$
we have
$$
left(partial_x-partial_y+2partial_zright)V = x y z
$$
using the characteristic method, we have
$$
frac{dx}{1}=frac{dy}{-1} = frac{dz}{2}
$$
giving the characteristics
$$
x+y = eta\
2y+z = xi\
2x-z = mu
$$
Choosing instead
$$
x-y = eta\
2y+z = xi\
2x-z = mu
$$
because $xi + mu = 2(x+y)$ and introducing now this change of variables into the full PDE we will obtain
$$
V_{eta}(eta ,xi ,mu )=frac{1}{64} (2 eta -mu +xi ) (-2 eta +mu +xi ) (2 eta +mu +xi )
$$
now considering $V = V_h + V_p$ this PDE can be easily solved.
$$
V_h(eta ,xi ,mu) = C_1+f(xi,mu)
$$
In this case $V_p(eta,xi,mu)$ is a polynomial form.
Finally after solving $V$ we will solve
$$
left(partial_x-partial_y+2partial_zright)U = V
$$
with the same process.
NOTE
Here
$$
V_p(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right)
$$
then
$$
V(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right) + f(xi,mu)
$$
edited Dec 20 '18 at 9:19
answered Dec 18 '18 at 19:17
CesareoCesareo
9,4923517
9,4923517
$begingroup$
So how do you turn $xyz$ into that RHS expression?
$endgroup$
– mathreadler
Dec 18 '18 at 19:20
$begingroup$
@mathreadler Linearity is a great ally!
$endgroup$
– Cesareo
Dec 18 '18 at 19:25
$begingroup$
I doubt someone just trying to start to learn it can get it if I can't get it.
$endgroup$
– mathreadler
Dec 18 '18 at 19:26
$begingroup$
@mathreadler Try to walk with shorter steps.
$endgroup$
– Cesareo
Dec 18 '18 at 19:29
$begingroup$
@mathreadler Some additional information was included. I hope it helps now.
$endgroup$
– Cesareo
Dec 18 '18 at 19:52
add a comment |
$begingroup$
So how do you turn $xyz$ into that RHS expression?
$endgroup$
– mathreadler
Dec 18 '18 at 19:20
$begingroup$
@mathreadler Linearity is a great ally!
$endgroup$
– Cesareo
Dec 18 '18 at 19:25
$begingroup$
I doubt someone just trying to start to learn it can get it if I can't get it.
$endgroup$
– mathreadler
Dec 18 '18 at 19:26
$begingroup$
@mathreadler Try to walk with shorter steps.
$endgroup$
– Cesareo
Dec 18 '18 at 19:29
$begingroup$
@mathreadler Some additional information was included. I hope it helps now.
$endgroup$
– Cesareo
Dec 18 '18 at 19:52
$begingroup$
So how do you turn $xyz$ into that RHS expression?
$endgroup$
– mathreadler
Dec 18 '18 at 19:20
$begingroup$
So how do you turn $xyz$ into that RHS expression?
$endgroup$
– mathreadler
Dec 18 '18 at 19:20
$begingroup$
@mathreadler Linearity is a great ally!
$endgroup$
– Cesareo
Dec 18 '18 at 19:25
$begingroup$
@mathreadler Linearity is a great ally!
$endgroup$
– Cesareo
Dec 18 '18 at 19:25
$begingroup$
I doubt someone just trying to start to learn it can get it if I can't get it.
$endgroup$
– mathreadler
Dec 18 '18 at 19:26
$begingroup$
I doubt someone just trying to start to learn it can get it if I can't get it.
$endgroup$
– mathreadler
Dec 18 '18 at 19:26
$begingroup$
@mathreadler Try to walk with shorter steps.
$endgroup$
– Cesareo
Dec 18 '18 at 19:29
$begingroup$
@mathreadler Try to walk with shorter steps.
$endgroup$
– Cesareo
Dec 18 '18 at 19:29
$begingroup$
@mathreadler Some additional information was included. I hope it helps now.
$endgroup$
– Cesareo
Dec 18 '18 at 19:52
$begingroup$
@mathreadler Some additional information was included. I hope it helps now.
$endgroup$
– Cesareo
Dec 18 '18 at 19:52
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045561%2fgeneral-solution-for-partial-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown