Sum of independent random variables with different distributions
Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
$$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$
probability proof-verification
add a comment |
Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
$$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$
probability proof-verification
add a comment |
Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
$$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$
probability proof-verification
Can we find the distribution of the sum of random variables with different pmf and different possible values?For example let X be a Poisson random variable with parameter $lambda$ and Y an independent Bernoulli random variable with parameter $p$. Then is the probability mass function of X + Y
$$p_{X+Y}(n)=sum_{k=1}^n P(X=n-k)P(Y=k) = e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p = pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}?$$
probability proof-verification
probability proof-verification
asked Nov 22 at 14:27
dxdydz
1949
1949
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$
if $n>0$, then we have
begin{align}
p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
&= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
end{align}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009200%2fsum-of-independent-random-variables-with-different-distributions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$
if $n>0$, then we have
begin{align}
p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
&= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
end{align}
add a comment |
if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$
if $n>0$, then we have
begin{align}
p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
&= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
end{align}
add a comment |
if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$
if $n>0$, then we have
begin{align}
p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
&= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
end{align}
if $n=0$, then we have $$p_{{X+Y}}(0)=exp(-lambda)(1-p)$$
if $n>0$, then we have
begin{align}
p_{X+Y}(n) &= sum_{k=0}^1 P(X=n-k) P(Y=k)\
&= e^{-lambda}frac{lambda^n}{n!}(1-p)+e^{-lambda}frac{lambda^{n-1}}{(n-1)!}p \&= pe^{-lambda}(frac{lambda^{n-1}n-lambda^n}{n!})+e^{-lambda}frac{lambda^{n}}{n!}
end{align}
answered Nov 22 at 14:34
Siong Thye Goh
98.4k1463116
98.4k1463116
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009200%2fsum-of-independent-random-variables-with-different-distributions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown