Posts

Showing posts from December 3, 2018

$mu$ pure point measure if and only if $mu(A)=sum_{xin A} mu(left{xright})$

Image
up vote 0 down vote favorite $mu$ is a pure point measure if and only if for every $Ain mathcal{B}(X)$ , $mathcal{B}(X)$ sigma-algebra Baire. $X$ compact hausdorff $mu(A)=sum_{xin A} mu(left{xright})$ I have this If $mu(A)=0$ is hold. If $mu(A)>0$ , then exists $xin A: mu(left{xright})>0$ Then $left{x:mu(A)>0right}=bigcup_{xin A} left{x:mu(left{xright})>0right}$ and I do not know how to continue ... real-analysis functional-analysis measure-theory share | cite | improve this question asked Nov 17 at 3:10 eraldcoil 276 1 9 ...