If $bar X_nleq X_n$ for every $n$ then the associated counting processes are such that $bar N(t) geq N(t)$...












-3












$begingroup$



${X_n, ngeq 1}$ is a renewal process. Let, there exists an $alpha>0$ such that $P(X_ngeq alpha)>0$. Now, define another related renewal process, ${bar X_n, ngeq 1}$ by,
begin{equation}
bar X_n=
begin{cases}
0, & text{if} X_n <alpha \
alpha, & text{otherwise}
end{cases}
end{equation}

For, $nge 1$, let $S_n = X_1+dots + X_n$ and $bar S_n = bar X_1+dots + bar X_n$. Also, let, $N(t) = max {nmid S_n leq t}$ and $bar N(t) = max {nmid bar S_n leq t}$



Show that, $bar N(t) geq N(t)$.




What I did: It is easy to see that $bar X_n leq X_n$, so $bar S_nleq S_n$. We also know that ${N(t)geq n}Leftrightarrow{S_nleq t}$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
    $endgroup$
    – Did
    Dec 17 '18 at 9:15


















-3












$begingroup$



${X_n, ngeq 1}$ is a renewal process. Let, there exists an $alpha>0$ such that $P(X_ngeq alpha)>0$. Now, define another related renewal process, ${bar X_n, ngeq 1}$ by,
begin{equation}
bar X_n=
begin{cases}
0, & text{if} X_n <alpha \
alpha, & text{otherwise}
end{cases}
end{equation}

For, $nge 1$, let $S_n = X_1+dots + X_n$ and $bar S_n = bar X_1+dots + bar X_n$. Also, let, $N(t) = max {nmid S_n leq t}$ and $bar N(t) = max {nmid bar S_n leq t}$



Show that, $bar N(t) geq N(t)$.




What I did: It is easy to see that $bar X_n leq X_n$, so $bar S_nleq S_n$. We also know that ${N(t)geq n}Leftrightarrow{S_nleq t}$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
    $endgroup$
    – Did
    Dec 17 '18 at 9:15
















-3












-3








-3





$begingroup$



${X_n, ngeq 1}$ is a renewal process. Let, there exists an $alpha>0$ such that $P(X_ngeq alpha)>0$. Now, define another related renewal process, ${bar X_n, ngeq 1}$ by,
begin{equation}
bar X_n=
begin{cases}
0, & text{if} X_n <alpha \
alpha, & text{otherwise}
end{cases}
end{equation}

For, $nge 1$, let $S_n = X_1+dots + X_n$ and $bar S_n = bar X_1+dots + bar X_n$. Also, let, $N(t) = max {nmid S_n leq t}$ and $bar N(t) = max {nmid bar S_n leq t}$



Show that, $bar N(t) geq N(t)$.




What I did: It is easy to see that $bar X_n leq X_n$, so $bar S_nleq S_n$. We also know that ${N(t)geq n}Leftrightarrow{S_nleq t}$.










share|cite|improve this question











$endgroup$





${X_n, ngeq 1}$ is a renewal process. Let, there exists an $alpha>0$ such that $P(X_ngeq alpha)>0$. Now, define another related renewal process, ${bar X_n, ngeq 1}$ by,
begin{equation}
bar X_n=
begin{cases}
0, & text{if} X_n <alpha \
alpha, & text{otherwise}
end{cases}
end{equation}

For, $nge 1$, let $S_n = X_1+dots + X_n$ and $bar S_n = bar X_1+dots + bar X_n$. Also, let, $N(t) = max {nmid S_n leq t}$ and $bar N(t) = max {nmid bar S_n leq t}$



Show that, $bar N(t) geq N(t)$.




What I did: It is easy to see that $bar X_n leq X_n$, so $bar S_nleq S_n$. We also know that ${N(t)geq n}Leftrightarrow{S_nleq t}$.







probability-theory stochastic-processes






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 9:17









Did

248k23225463




248k23225463










asked Dec 17 '18 at 8:11









Stat_prob_001Stat_prob_001

321113




321113








  • 1




    $begingroup$
    Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
    $endgroup$
    – Did
    Dec 17 '18 at 9:15
















  • 1




    $begingroup$
    Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
    $endgroup$
    – Did
    Dec 17 '18 at 9:15










1




1




$begingroup$
Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
$endgroup$
– Did
Dec 17 '18 at 9:15






$begingroup$
Well, $bar S_nleq S_n$ hence ${N(t)geq n}={S_nleq t}subseteq{bar S_nleq t}={bar N(t)geq n}$. And if ${N(t)geq n}subseteq{bar N(t)geq n}$ for every $n$, then $bar N(t)ge N(t)$ almost surely.
$endgroup$
– Did
Dec 17 '18 at 9:15












1 Answer
1






active

oldest

votes


















1












$begingroup$

The braces ${$ and $}$ in your last statement should not be there. Then we get:$$N(t)geq niff S_nleq t$$as it should.



Combining this with $overline S_nleq S_n$ we find:$$N(t)geq nimplies overline S_nleq t$$or - on base of $overline N(t)geq niff overline S_nleq t$ - equivalently:$$N(t)geq nimplies overline N(t)geq ntag1$$



This for every $n$, so it implies that: $$overline N(t)geq N(t)tag2$$





Formally pick out an arbitrary $omegainOmega$ an let it be that $n=N(t)(omega)$. Then $N(t)(omega)geq n$ so according to $(1)$ we have $overline N(t)(omega)geq n=N(t)(omega)$. This proves that $overline N(t)(omega)geq N(t)(omega)$ for every $omegainOmega$ or shortly that $(2)$ is valid.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043673%2fif-bar-x-n-leq-x-n-for-every-n-then-the-associated-counting-processes-are-s%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    The braces ${$ and $}$ in your last statement should not be there. Then we get:$$N(t)geq niff S_nleq t$$as it should.



    Combining this with $overline S_nleq S_n$ we find:$$N(t)geq nimplies overline S_nleq t$$or - on base of $overline N(t)geq niff overline S_nleq t$ - equivalently:$$N(t)geq nimplies overline N(t)geq ntag1$$



    This for every $n$, so it implies that: $$overline N(t)geq N(t)tag2$$





    Formally pick out an arbitrary $omegainOmega$ an let it be that $n=N(t)(omega)$. Then $N(t)(omega)geq n$ so according to $(1)$ we have $overline N(t)(omega)geq n=N(t)(omega)$. This proves that $overline N(t)(omega)geq N(t)(omega)$ for every $omegainOmega$ or shortly that $(2)$ is valid.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      The braces ${$ and $}$ in your last statement should not be there. Then we get:$$N(t)geq niff S_nleq t$$as it should.



      Combining this with $overline S_nleq S_n$ we find:$$N(t)geq nimplies overline S_nleq t$$or - on base of $overline N(t)geq niff overline S_nleq t$ - equivalently:$$N(t)geq nimplies overline N(t)geq ntag1$$



      This for every $n$, so it implies that: $$overline N(t)geq N(t)tag2$$





      Formally pick out an arbitrary $omegainOmega$ an let it be that $n=N(t)(omega)$. Then $N(t)(omega)geq n$ so according to $(1)$ we have $overline N(t)(omega)geq n=N(t)(omega)$. This proves that $overline N(t)(omega)geq N(t)(omega)$ for every $omegainOmega$ or shortly that $(2)$ is valid.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        The braces ${$ and $}$ in your last statement should not be there. Then we get:$$N(t)geq niff S_nleq t$$as it should.



        Combining this with $overline S_nleq S_n$ we find:$$N(t)geq nimplies overline S_nleq t$$or - on base of $overline N(t)geq niff overline S_nleq t$ - equivalently:$$N(t)geq nimplies overline N(t)geq ntag1$$



        This for every $n$, so it implies that: $$overline N(t)geq N(t)tag2$$





        Formally pick out an arbitrary $omegainOmega$ an let it be that $n=N(t)(omega)$. Then $N(t)(omega)geq n$ so according to $(1)$ we have $overline N(t)(omega)geq n=N(t)(omega)$. This proves that $overline N(t)(omega)geq N(t)(omega)$ for every $omegainOmega$ or shortly that $(2)$ is valid.






        share|cite|improve this answer











        $endgroup$



        The braces ${$ and $}$ in your last statement should not be there. Then we get:$$N(t)geq niff S_nleq t$$as it should.



        Combining this with $overline S_nleq S_n$ we find:$$N(t)geq nimplies overline S_nleq t$$or - on base of $overline N(t)geq niff overline S_nleq t$ - equivalently:$$N(t)geq nimplies overline N(t)geq ntag1$$



        This for every $n$, so it implies that: $$overline N(t)geq N(t)tag2$$





        Formally pick out an arbitrary $omegainOmega$ an let it be that $n=N(t)(omega)$. Then $N(t)(omega)geq n$ so according to $(1)$ we have $overline N(t)(omega)geq n=N(t)(omega)$. This proves that $overline N(t)(omega)geq N(t)(omega)$ for every $omegainOmega$ or shortly that $(2)$ is valid.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 17 '18 at 10:40

























        answered Dec 17 '18 at 9:23









        drhabdrhab

        103k545136




        103k545136






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043673%2fif-bar-x-n-leq-x-n-for-every-n-then-the-associated-counting-processes-are-s%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

            How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...