How to find the taylor series for $f(x) = frac{1}{16-x^2}$ centered at 9 in summation notation












0












$begingroup$


Having trouble finding the taylor series for the following function:



$$f(x) = frac{1}{16-x^2} textrm{ centered at c=9}$$



I was trying to look at it in a way such that I could modify $frac{1}{1-x} = sum_{n=0}^{infty} x^n$. I wasn't able to come up with anything though.



I found some of the first few terms, but I can't see to find all the patterns.



$$frac{1}{16-x^2} = frac{-1}{65} + frac{18}{4225}(x-9) - frac{518}{274625}(x-9)^2$$



I noticed the denominators multiply by 65 each time. Can't seem to find a pattern for the numerator though.



Seems to be something like:



$$2x = 2(9) = 18$$



$$6x^2 + 32 = 6(9^2) +32 = 518$$



$$24x^3 + 384x = textrm{next numerator}$$



Pattern doesn't seem to stay much or gets more complex though. Any idea how to solve this problem?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Having trouble finding the taylor series for the following function:



    $$f(x) = frac{1}{16-x^2} textrm{ centered at c=9}$$



    I was trying to look at it in a way such that I could modify $frac{1}{1-x} = sum_{n=0}^{infty} x^n$. I wasn't able to come up with anything though.



    I found some of the first few terms, but I can't see to find all the patterns.



    $$frac{1}{16-x^2} = frac{-1}{65} + frac{18}{4225}(x-9) - frac{518}{274625}(x-9)^2$$



    I noticed the denominators multiply by 65 each time. Can't seem to find a pattern for the numerator though.



    Seems to be something like:



    $$2x = 2(9) = 18$$



    $$6x^2 + 32 = 6(9^2) +32 = 518$$



    $$24x^3 + 384x = textrm{next numerator}$$



    Pattern doesn't seem to stay much or gets more complex though. Any idea how to solve this problem?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Having trouble finding the taylor series for the following function:



      $$f(x) = frac{1}{16-x^2} textrm{ centered at c=9}$$



      I was trying to look at it in a way such that I could modify $frac{1}{1-x} = sum_{n=0}^{infty} x^n$. I wasn't able to come up with anything though.



      I found some of the first few terms, but I can't see to find all the patterns.



      $$frac{1}{16-x^2} = frac{-1}{65} + frac{18}{4225}(x-9) - frac{518}{274625}(x-9)^2$$



      I noticed the denominators multiply by 65 each time. Can't seem to find a pattern for the numerator though.



      Seems to be something like:



      $$2x = 2(9) = 18$$



      $$6x^2 + 32 = 6(9^2) +32 = 518$$



      $$24x^3 + 384x = textrm{next numerator}$$



      Pattern doesn't seem to stay much or gets more complex though. Any idea how to solve this problem?










      share|cite|improve this question









      $endgroup$




      Having trouble finding the taylor series for the following function:



      $$f(x) = frac{1}{16-x^2} textrm{ centered at c=9}$$



      I was trying to look at it in a way such that I could modify $frac{1}{1-x} = sum_{n=0}^{infty} x^n$. I wasn't able to come up with anything though.



      I found some of the first few terms, but I can't see to find all the patterns.



      $$frac{1}{16-x^2} = frac{-1}{65} + frac{18}{4225}(x-9) - frac{518}{274625}(x-9)^2$$



      I noticed the denominators multiply by 65 each time. Can't seem to find a pattern for the numerator though.



      Seems to be something like:



      $$2x = 2(9) = 18$$



      $$6x^2 + 32 = 6(9^2) +32 = 518$$



      $$24x^3 + 384x = textrm{next numerator}$$



      Pattern doesn't seem to stay much or gets more complex though. Any idea how to solve this problem?







      calculus sequences-and-series taylor-expansion






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 11 '18 at 1:40









      James MitchellJames Mitchell

      25627




      25627






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Write
          begin{align*}
          f(x) & = frac{1}{16-x^2}\
          & = frac{1}{8}left[frac{1}{4-x}+frac{1}{4+x}right]\
          & = frac{1}{8}left[frac{1}{-5-(x-9)}+frac{1}{13+(x-9)}right]\
          & = frac{1}{8}left[frac{1}{-5}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{13}left(frac{1}{1+frac{x-9}{13}}right)right]\
          & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)
          end{align*}

          Now use the geometric series expansion
          $$frac{1}{1+frac{x-a}{b}}=sum_{k=0}^{infty}(-1)^kleft(frac{x-a}{b}right)^k,$$
          to get,
          begin{align*}
          f(x) & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)\
          &=frac{1}{-40}sum_{k=0}^{infty}(-1)^kleft(frac{x-9}{5}right)^k+frac{1}{104}(-1)^kleft(frac{x-9}{13}right)^k\
          &=sum_{k=0}^{infty}(-1)^kleft(frac{1}{(-40)5^k}+frac{1}{(104)13^k}right)(x-9)^k\
          &=sum_{k=0}^{infty}color{red}{frac{(-1)^k}{8}left(frac{5^{k+1}-13^{k+1}}{65^{k+1}}right)}(x-9)^k\
          end{align*}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
            $endgroup$
            – Ricardo Largaespada
            Dec 11 '18 at 2:50












          • $begingroup$
            @RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
            $endgroup$
            – Anurag A
            Dec 11 '18 at 5:11



















          0












          $begingroup$

          Decompose:
          $$frac{1}{16-x^2}=frac{1}{(4-x)(4+x)}=frac18left[frac1{4-x}+frac1{4+x}right]$$
          Expand each term separately:
          $$begin{align}f(9)&=frac1{4-9}=-frac15; \
          f'(9)&=frac1{(4-9)^2}=frac1{5^2};\
          f''(9)&=-frac2{(4-9)^3}=-frac2{5^3};\
          &vdots\
          frac1{4-x}&=-frac15+frac{1}{1!cdot 5^2}(x-9)-frac2{2!cdot 5^3}(x-9)^2+cdots+(-1)^{n+1}frac{(n-1)!}{(n-1)!cdot 5^{n+1}}(x-9)^n+cdots\
          =====&========================================== \
          f(9)&=frac1{4+9}=frac1{13};\
          f'(9)&=-frac1{(4+9)^2}=-frac1{13^2};\
          f''(9)&=frac2{(4+9)^3}=frac2{13^3};\
          &vdots\
          frac1{4+x}&=frac1{13}-frac{1}{1!cdot 13^2}(x-9)+frac2{2!cdot 13^3}(x-9)^3+cdots+(-1)^nfrac{(n-1)!}{(n-1)!cdot 13^{n+1}}(x-9)^n+cdots\
          end{align}$$

          Hence:
          $$begin{align}frac1{16-x^2}&=frac18left[sum_{n=0}^{infty} frac{(-1)^{n+1}}{5^{n+1}}(x-9)^n+sum_{n=0}^{infty} frac{(-1)^{n}}{13^{n+1}}(x-9)^nright]=\
          &=frac18sum_{n=0}^{infty} frac{1}{65^{n+1}}left[(-1)^{n+1}13^{n+1}+(-1)^n5^{n+1}right](x-9)^n=\
          &=frac18sum_{n=0}^{infty} 65^{-n-1}left[(-13)^{n+1}+(-1)^n5^{n+1}right](x-9)^n.
          end{align}$$

          See WolframAlpha's answer.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034758%2fhow-to-find-the-taylor-series-for-fx-frac116-x2-centered-at-9-in-sum%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Write
            begin{align*}
            f(x) & = frac{1}{16-x^2}\
            & = frac{1}{8}left[frac{1}{4-x}+frac{1}{4+x}right]\
            & = frac{1}{8}left[frac{1}{-5-(x-9)}+frac{1}{13+(x-9)}right]\
            & = frac{1}{8}left[frac{1}{-5}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{13}left(frac{1}{1+frac{x-9}{13}}right)right]\
            & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)
            end{align*}

            Now use the geometric series expansion
            $$frac{1}{1+frac{x-a}{b}}=sum_{k=0}^{infty}(-1)^kleft(frac{x-a}{b}right)^k,$$
            to get,
            begin{align*}
            f(x) & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)\
            &=frac{1}{-40}sum_{k=0}^{infty}(-1)^kleft(frac{x-9}{5}right)^k+frac{1}{104}(-1)^kleft(frac{x-9}{13}right)^k\
            &=sum_{k=0}^{infty}(-1)^kleft(frac{1}{(-40)5^k}+frac{1}{(104)13^k}right)(x-9)^k\
            &=sum_{k=0}^{infty}color{red}{frac{(-1)^k}{8}left(frac{5^{k+1}-13^{k+1}}{65^{k+1}}right)}(x-9)^k\
            end{align*}






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
              $endgroup$
              – Ricardo Largaespada
              Dec 11 '18 at 2:50












            • $begingroup$
              @RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
              $endgroup$
              – Anurag A
              Dec 11 '18 at 5:11
















            4












            $begingroup$

            Write
            begin{align*}
            f(x) & = frac{1}{16-x^2}\
            & = frac{1}{8}left[frac{1}{4-x}+frac{1}{4+x}right]\
            & = frac{1}{8}left[frac{1}{-5-(x-9)}+frac{1}{13+(x-9)}right]\
            & = frac{1}{8}left[frac{1}{-5}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{13}left(frac{1}{1+frac{x-9}{13}}right)right]\
            & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)
            end{align*}

            Now use the geometric series expansion
            $$frac{1}{1+frac{x-a}{b}}=sum_{k=0}^{infty}(-1)^kleft(frac{x-a}{b}right)^k,$$
            to get,
            begin{align*}
            f(x) & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)\
            &=frac{1}{-40}sum_{k=0}^{infty}(-1)^kleft(frac{x-9}{5}right)^k+frac{1}{104}(-1)^kleft(frac{x-9}{13}right)^k\
            &=sum_{k=0}^{infty}(-1)^kleft(frac{1}{(-40)5^k}+frac{1}{(104)13^k}right)(x-9)^k\
            &=sum_{k=0}^{infty}color{red}{frac{(-1)^k}{8}left(frac{5^{k+1}-13^{k+1}}{65^{k+1}}right)}(x-9)^k\
            end{align*}






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
              $endgroup$
              – Ricardo Largaespada
              Dec 11 '18 at 2:50












            • $begingroup$
              @RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
              $endgroup$
              – Anurag A
              Dec 11 '18 at 5:11














            4












            4








            4





            $begingroup$

            Write
            begin{align*}
            f(x) & = frac{1}{16-x^2}\
            & = frac{1}{8}left[frac{1}{4-x}+frac{1}{4+x}right]\
            & = frac{1}{8}left[frac{1}{-5-(x-9)}+frac{1}{13+(x-9)}right]\
            & = frac{1}{8}left[frac{1}{-5}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{13}left(frac{1}{1+frac{x-9}{13}}right)right]\
            & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)
            end{align*}

            Now use the geometric series expansion
            $$frac{1}{1+frac{x-a}{b}}=sum_{k=0}^{infty}(-1)^kleft(frac{x-a}{b}right)^k,$$
            to get,
            begin{align*}
            f(x) & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)\
            &=frac{1}{-40}sum_{k=0}^{infty}(-1)^kleft(frac{x-9}{5}right)^k+frac{1}{104}(-1)^kleft(frac{x-9}{13}right)^k\
            &=sum_{k=0}^{infty}(-1)^kleft(frac{1}{(-40)5^k}+frac{1}{(104)13^k}right)(x-9)^k\
            &=sum_{k=0}^{infty}color{red}{frac{(-1)^k}{8}left(frac{5^{k+1}-13^{k+1}}{65^{k+1}}right)}(x-9)^k\
            end{align*}






            share|cite|improve this answer











            $endgroup$



            Write
            begin{align*}
            f(x) & = frac{1}{16-x^2}\
            & = frac{1}{8}left[frac{1}{4-x}+frac{1}{4+x}right]\
            & = frac{1}{8}left[frac{1}{-5-(x-9)}+frac{1}{13+(x-9)}right]\
            & = frac{1}{8}left[frac{1}{-5}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{13}left(frac{1}{1+frac{x-9}{13}}right)right]\
            & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)
            end{align*}

            Now use the geometric series expansion
            $$frac{1}{1+frac{x-a}{b}}=sum_{k=0}^{infty}(-1)^kleft(frac{x-a}{b}right)^k,$$
            to get,
            begin{align*}
            f(x) & = frac{1}{-40}left(frac{1}{1+frac{x-9}{5}}right)+frac{1}{104}left(frac{1}{1+frac{x-9}{13}}right)\
            &=frac{1}{-40}sum_{k=0}^{infty}(-1)^kleft(frac{x-9}{5}right)^k+frac{1}{104}(-1)^kleft(frac{x-9}{13}right)^k\
            &=sum_{k=0}^{infty}(-1)^kleft(frac{1}{(-40)5^k}+frac{1}{(104)13^k}right)(x-9)^k\
            &=sum_{k=0}^{infty}color{red}{frac{(-1)^k}{8}left(frac{5^{k+1}-13^{k+1}}{65^{k+1}}right)}(x-9)^k\
            end{align*}







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 11 '18 at 5:11

























            answered Dec 11 '18 at 1:52









            Anurag AAnurag A

            26.2k12251




            26.2k12251












            • $begingroup$
              Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
              $endgroup$
              – Ricardo Largaespada
              Dec 11 '18 at 2:50












            • $begingroup$
              @RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
              $endgroup$
              – Anurag A
              Dec 11 '18 at 5:11


















            • $begingroup$
              Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
              $endgroup$
              – Ricardo Largaespada
              Dec 11 '18 at 2:50












            • $begingroup$
              @RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
              $endgroup$
              – Anurag A
              Dec 11 '18 at 5:11
















            $begingroup$
            Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
            $endgroup$
            – Ricardo Largaespada
            Dec 11 '18 at 2:50






            $begingroup$
            Actually the numerator of the fraction must be $5^{k+1}-13^{k+1}$.
            $endgroup$
            – Ricardo Largaespada
            Dec 11 '18 at 2:50














            $begingroup$
            @RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
            $endgroup$
            – Anurag A
            Dec 11 '18 at 5:11




            $begingroup$
            @RicardoLargaespada Thanks for pointing out the the typo. I have fixed it.
            $endgroup$
            – Anurag A
            Dec 11 '18 at 5:11











            0












            $begingroup$

            Decompose:
            $$frac{1}{16-x^2}=frac{1}{(4-x)(4+x)}=frac18left[frac1{4-x}+frac1{4+x}right]$$
            Expand each term separately:
            $$begin{align}f(9)&=frac1{4-9}=-frac15; \
            f'(9)&=frac1{(4-9)^2}=frac1{5^2};\
            f''(9)&=-frac2{(4-9)^3}=-frac2{5^3};\
            &vdots\
            frac1{4-x}&=-frac15+frac{1}{1!cdot 5^2}(x-9)-frac2{2!cdot 5^3}(x-9)^2+cdots+(-1)^{n+1}frac{(n-1)!}{(n-1)!cdot 5^{n+1}}(x-9)^n+cdots\
            =====&========================================== \
            f(9)&=frac1{4+9}=frac1{13};\
            f'(9)&=-frac1{(4+9)^2}=-frac1{13^2};\
            f''(9)&=frac2{(4+9)^3}=frac2{13^3};\
            &vdots\
            frac1{4+x}&=frac1{13}-frac{1}{1!cdot 13^2}(x-9)+frac2{2!cdot 13^3}(x-9)^3+cdots+(-1)^nfrac{(n-1)!}{(n-1)!cdot 13^{n+1}}(x-9)^n+cdots\
            end{align}$$

            Hence:
            $$begin{align}frac1{16-x^2}&=frac18left[sum_{n=0}^{infty} frac{(-1)^{n+1}}{5^{n+1}}(x-9)^n+sum_{n=0}^{infty} frac{(-1)^{n}}{13^{n+1}}(x-9)^nright]=\
            &=frac18sum_{n=0}^{infty} frac{1}{65^{n+1}}left[(-1)^{n+1}13^{n+1}+(-1)^n5^{n+1}right](x-9)^n=\
            &=frac18sum_{n=0}^{infty} 65^{-n-1}left[(-13)^{n+1}+(-1)^n5^{n+1}right](x-9)^n.
            end{align}$$

            See WolframAlpha's answer.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Decompose:
              $$frac{1}{16-x^2}=frac{1}{(4-x)(4+x)}=frac18left[frac1{4-x}+frac1{4+x}right]$$
              Expand each term separately:
              $$begin{align}f(9)&=frac1{4-9}=-frac15; \
              f'(9)&=frac1{(4-9)^2}=frac1{5^2};\
              f''(9)&=-frac2{(4-9)^3}=-frac2{5^3};\
              &vdots\
              frac1{4-x}&=-frac15+frac{1}{1!cdot 5^2}(x-9)-frac2{2!cdot 5^3}(x-9)^2+cdots+(-1)^{n+1}frac{(n-1)!}{(n-1)!cdot 5^{n+1}}(x-9)^n+cdots\
              =====&========================================== \
              f(9)&=frac1{4+9}=frac1{13};\
              f'(9)&=-frac1{(4+9)^2}=-frac1{13^2};\
              f''(9)&=frac2{(4+9)^3}=frac2{13^3};\
              &vdots\
              frac1{4+x}&=frac1{13}-frac{1}{1!cdot 13^2}(x-9)+frac2{2!cdot 13^3}(x-9)^3+cdots+(-1)^nfrac{(n-1)!}{(n-1)!cdot 13^{n+1}}(x-9)^n+cdots\
              end{align}$$

              Hence:
              $$begin{align}frac1{16-x^2}&=frac18left[sum_{n=0}^{infty} frac{(-1)^{n+1}}{5^{n+1}}(x-9)^n+sum_{n=0}^{infty} frac{(-1)^{n}}{13^{n+1}}(x-9)^nright]=\
              &=frac18sum_{n=0}^{infty} frac{1}{65^{n+1}}left[(-1)^{n+1}13^{n+1}+(-1)^n5^{n+1}right](x-9)^n=\
              &=frac18sum_{n=0}^{infty} 65^{-n-1}left[(-13)^{n+1}+(-1)^n5^{n+1}right](x-9)^n.
              end{align}$$

              See WolframAlpha's answer.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Decompose:
                $$frac{1}{16-x^2}=frac{1}{(4-x)(4+x)}=frac18left[frac1{4-x}+frac1{4+x}right]$$
                Expand each term separately:
                $$begin{align}f(9)&=frac1{4-9}=-frac15; \
                f'(9)&=frac1{(4-9)^2}=frac1{5^2};\
                f''(9)&=-frac2{(4-9)^3}=-frac2{5^3};\
                &vdots\
                frac1{4-x}&=-frac15+frac{1}{1!cdot 5^2}(x-9)-frac2{2!cdot 5^3}(x-9)^2+cdots+(-1)^{n+1}frac{(n-1)!}{(n-1)!cdot 5^{n+1}}(x-9)^n+cdots\
                =====&========================================== \
                f(9)&=frac1{4+9}=frac1{13};\
                f'(9)&=-frac1{(4+9)^2}=-frac1{13^2};\
                f''(9)&=frac2{(4+9)^3}=frac2{13^3};\
                &vdots\
                frac1{4+x}&=frac1{13}-frac{1}{1!cdot 13^2}(x-9)+frac2{2!cdot 13^3}(x-9)^3+cdots+(-1)^nfrac{(n-1)!}{(n-1)!cdot 13^{n+1}}(x-9)^n+cdots\
                end{align}$$

                Hence:
                $$begin{align}frac1{16-x^2}&=frac18left[sum_{n=0}^{infty} frac{(-1)^{n+1}}{5^{n+1}}(x-9)^n+sum_{n=0}^{infty} frac{(-1)^{n}}{13^{n+1}}(x-9)^nright]=\
                &=frac18sum_{n=0}^{infty} frac{1}{65^{n+1}}left[(-1)^{n+1}13^{n+1}+(-1)^n5^{n+1}right](x-9)^n=\
                &=frac18sum_{n=0}^{infty} 65^{-n-1}left[(-13)^{n+1}+(-1)^n5^{n+1}right](x-9)^n.
                end{align}$$

                See WolframAlpha's answer.






                share|cite|improve this answer









                $endgroup$



                Decompose:
                $$frac{1}{16-x^2}=frac{1}{(4-x)(4+x)}=frac18left[frac1{4-x}+frac1{4+x}right]$$
                Expand each term separately:
                $$begin{align}f(9)&=frac1{4-9}=-frac15; \
                f'(9)&=frac1{(4-9)^2}=frac1{5^2};\
                f''(9)&=-frac2{(4-9)^3}=-frac2{5^3};\
                &vdots\
                frac1{4-x}&=-frac15+frac{1}{1!cdot 5^2}(x-9)-frac2{2!cdot 5^3}(x-9)^2+cdots+(-1)^{n+1}frac{(n-1)!}{(n-1)!cdot 5^{n+1}}(x-9)^n+cdots\
                =====&========================================== \
                f(9)&=frac1{4+9}=frac1{13};\
                f'(9)&=-frac1{(4+9)^2}=-frac1{13^2};\
                f''(9)&=frac2{(4+9)^3}=frac2{13^3};\
                &vdots\
                frac1{4+x}&=frac1{13}-frac{1}{1!cdot 13^2}(x-9)+frac2{2!cdot 13^3}(x-9)^3+cdots+(-1)^nfrac{(n-1)!}{(n-1)!cdot 13^{n+1}}(x-9)^n+cdots\
                end{align}$$

                Hence:
                $$begin{align}frac1{16-x^2}&=frac18left[sum_{n=0}^{infty} frac{(-1)^{n+1}}{5^{n+1}}(x-9)^n+sum_{n=0}^{infty} frac{(-1)^{n}}{13^{n+1}}(x-9)^nright]=\
                &=frac18sum_{n=0}^{infty} frac{1}{65^{n+1}}left[(-1)^{n+1}13^{n+1}+(-1)^n5^{n+1}right](x-9)^n=\
                &=frac18sum_{n=0}^{infty} 65^{-n-1}left[(-13)^{n+1}+(-1)^n5^{n+1}right](x-9)^n.
                end{align}$$

                See WolframAlpha's answer.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 11 '18 at 15:17









                farruhotafarruhota

                20.4k2739




                20.4k2739






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034758%2fhow-to-find-the-taylor-series-for-fx-frac116-x2-centered-at-9-in-sum%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

                    How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...