Prove uniform convergence of $f_{n} (x) = sqrt{frac{1}{n^2} +x^2}$ to $f(x) = |x|$
$begingroup$
For each $n ∈ Bbb N$, let $f_{n} (x) = sqrt{frac{1}{n^2} +x^2}. $ Show $(f_{n})^{infty}_{n=0}$ converges uniformly on $Bbb R$ to $f(x) = |x|$
I'm trying to find the $N$ such that for all $x in Bbb R$ and $n > N$, $$Bigg|sqrt{frac{1}{n^2} +x^2} - |x|Bigg| < epsilon$$ but I'm struggling with proving convergence for all real $x$. I'v seen that for $x∈ [0,1]$, for $n$ greater than or equal to $1$, $$Bigg|sqrt{frac{1}{n^2} +x^2} - |x|Bigg|leq frac{1}{sqrt{n}} $$ but I'm unsure of how to generalize. Any help is appreciated!
real-analysis sequences-and-series uniform-convergence
$endgroup$
add a comment |
$begingroup$
For each $n ∈ Bbb N$, let $f_{n} (x) = sqrt{frac{1}{n^2} +x^2}. $ Show $(f_{n})^{infty}_{n=0}$ converges uniformly on $Bbb R$ to $f(x) = |x|$
I'm trying to find the $N$ such that for all $x in Bbb R$ and $n > N$, $$Bigg|sqrt{frac{1}{n^2} +x^2} - |x|Bigg| < epsilon$$ but I'm struggling with proving convergence for all real $x$. I'v seen that for $x∈ [0,1]$, for $n$ greater than or equal to $1$, $$Bigg|sqrt{frac{1}{n^2} +x^2} - |x|Bigg|leq frac{1}{sqrt{n}} $$ but I'm unsure of how to generalize. Any help is appreciated!
real-analysis sequences-and-series uniform-convergence
$endgroup$
add a comment |
$begingroup$
For each $n ∈ Bbb N$, let $f_{n} (x) = sqrt{frac{1}{n^2} +x^2}. $ Show $(f_{n})^{infty}_{n=0}$ converges uniformly on $Bbb R$ to $f(x) = |x|$
I'm trying to find the $N$ such that for all $x in Bbb R$ and $n > N$, $$Bigg|sqrt{frac{1}{n^2} +x^2} - |x|Bigg| < epsilon$$ but I'm struggling with proving convergence for all real $x$. I'v seen that for $x∈ [0,1]$, for $n$ greater than or equal to $1$, $$Bigg|sqrt{frac{1}{n^2} +x^2} - |x|Bigg|leq frac{1}{sqrt{n}} $$ but I'm unsure of how to generalize. Any help is appreciated!
real-analysis sequences-and-series uniform-convergence
$endgroup$
For each $n ∈ Bbb N$, let $f_{n} (x) = sqrt{frac{1}{n^2} +x^2}. $ Show $(f_{n})^{infty}_{n=0}$ converges uniformly on $Bbb R$ to $f(x) = |x|$
I'm trying to find the $N$ such that for all $x in Bbb R$ and $n > N$, $$Bigg|sqrt{frac{1}{n^2} +x^2} - |x|Bigg| < epsilon$$ but I'm struggling with proving convergence for all real $x$. I'v seen that for $x∈ [0,1]$, for $n$ greater than or equal to $1$, $$Bigg|sqrt{frac{1}{n^2} +x^2} - |x|Bigg|leq frac{1}{sqrt{n}} $$ but I'm unsure of how to generalize. Any help is appreciated!
real-analysis sequences-and-series uniform-convergence
real-analysis sequences-and-series uniform-convergence
edited Dec 5 '18 at 9:36
Chinnapparaj R
5,4331928
5,4331928
asked Dec 5 '18 at 9:28
user613048user613048
322
322
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Note that$$sqrt{x^2+frac1{n^2}}-lvert xrvert=frac{frac1{n^2}}{sqrt{x^2+frac1{n^2}}+lvert xrvert}.$$Since the numerator is constant and the denominator is positive and increases to $infty$ when $lvert xrverttoinfty$, the maximum of $sqrt{x^2+frac1{n^2}}-lvert xrvert$ is attained when $x=0$. And that maximum is $frac1n$. So$$(forall xinmathbb{R}):leftlvertsqrt{x^2+frac1{n^2}}-lvert xrvertrightrvertleqslantfrac1n,$$from which the uniform convergence follows.
$endgroup$
add a comment |
$begingroup$
If you use $sqrt a -sqrt b=frac {a-b} {sqrt a +sqrt b}$ you will get the result easily.
$endgroup$
add a comment |
$begingroup$
Hint: We have
$$|f_n(x) - |x|| = frac{1}{n^2} frac{1}{|x|+sqrt{1/n^2 +x^2}} le frac{1}{n}.$$
$endgroup$
add a comment |
$begingroup$
Hint: $$left(vert x vert +frac{1}{n}right)^2=x^2+frac{1}{n^2}+2vert x vert frac{1}{n}=f_n^2+2vert x vert frac{1}{n} geq f_n^2 geq 0$$ so $$0 leq f_n le vert x vert+frac{1}{n}$$ and so $$0 leq f_n - vert x vert leq frac{1}{n} rightarrow 0$$
Moral:
Uniform limit of sequence of continuously differentiable function need not be continuously differentiable!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026863%2fprove-uniform-convergence-of-f-n-x-sqrt-frac1n2-x2-to-fx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that$$sqrt{x^2+frac1{n^2}}-lvert xrvert=frac{frac1{n^2}}{sqrt{x^2+frac1{n^2}}+lvert xrvert}.$$Since the numerator is constant and the denominator is positive and increases to $infty$ when $lvert xrverttoinfty$, the maximum of $sqrt{x^2+frac1{n^2}}-lvert xrvert$ is attained when $x=0$. And that maximum is $frac1n$. So$$(forall xinmathbb{R}):leftlvertsqrt{x^2+frac1{n^2}}-lvert xrvertrightrvertleqslantfrac1n,$$from which the uniform convergence follows.
$endgroup$
add a comment |
$begingroup$
Note that$$sqrt{x^2+frac1{n^2}}-lvert xrvert=frac{frac1{n^2}}{sqrt{x^2+frac1{n^2}}+lvert xrvert}.$$Since the numerator is constant and the denominator is positive and increases to $infty$ when $lvert xrverttoinfty$, the maximum of $sqrt{x^2+frac1{n^2}}-lvert xrvert$ is attained when $x=0$. And that maximum is $frac1n$. So$$(forall xinmathbb{R}):leftlvertsqrt{x^2+frac1{n^2}}-lvert xrvertrightrvertleqslantfrac1n,$$from which the uniform convergence follows.
$endgroup$
add a comment |
$begingroup$
Note that$$sqrt{x^2+frac1{n^2}}-lvert xrvert=frac{frac1{n^2}}{sqrt{x^2+frac1{n^2}}+lvert xrvert}.$$Since the numerator is constant and the denominator is positive and increases to $infty$ when $lvert xrverttoinfty$, the maximum of $sqrt{x^2+frac1{n^2}}-lvert xrvert$ is attained when $x=0$. And that maximum is $frac1n$. So$$(forall xinmathbb{R}):leftlvertsqrt{x^2+frac1{n^2}}-lvert xrvertrightrvertleqslantfrac1n,$$from which the uniform convergence follows.
$endgroup$
Note that$$sqrt{x^2+frac1{n^2}}-lvert xrvert=frac{frac1{n^2}}{sqrt{x^2+frac1{n^2}}+lvert xrvert}.$$Since the numerator is constant and the denominator is positive and increases to $infty$ when $lvert xrverttoinfty$, the maximum of $sqrt{x^2+frac1{n^2}}-lvert xrvert$ is attained when $x=0$. And that maximum is $frac1n$. So$$(forall xinmathbb{R}):leftlvertsqrt{x^2+frac1{n^2}}-lvert xrvertrightrvertleqslantfrac1n,$$from which the uniform convergence follows.
answered Dec 5 '18 at 9:35
José Carlos SantosJosé Carlos Santos
159k22126229
159k22126229
add a comment |
add a comment |
$begingroup$
If you use $sqrt a -sqrt b=frac {a-b} {sqrt a +sqrt b}$ you will get the result easily.
$endgroup$
add a comment |
$begingroup$
If you use $sqrt a -sqrt b=frac {a-b} {sqrt a +sqrt b}$ you will get the result easily.
$endgroup$
add a comment |
$begingroup$
If you use $sqrt a -sqrt b=frac {a-b} {sqrt a +sqrt b}$ you will get the result easily.
$endgroup$
If you use $sqrt a -sqrt b=frac {a-b} {sqrt a +sqrt b}$ you will get the result easily.
answered Dec 5 '18 at 9:31
Kavi Rama MurthyKavi Rama Murthy
57.7k42160
57.7k42160
add a comment |
add a comment |
$begingroup$
Hint: We have
$$|f_n(x) - |x|| = frac{1}{n^2} frac{1}{|x|+sqrt{1/n^2 +x^2}} le frac{1}{n}.$$
$endgroup$
add a comment |
$begingroup$
Hint: We have
$$|f_n(x) - |x|| = frac{1}{n^2} frac{1}{|x|+sqrt{1/n^2 +x^2}} le frac{1}{n}.$$
$endgroup$
add a comment |
$begingroup$
Hint: We have
$$|f_n(x) - |x|| = frac{1}{n^2} frac{1}{|x|+sqrt{1/n^2 +x^2}} le frac{1}{n}.$$
$endgroup$
Hint: We have
$$|f_n(x) - |x|| = frac{1}{n^2} frac{1}{|x|+sqrt{1/n^2 +x^2}} le frac{1}{n}.$$
answered Dec 5 '18 at 9:32
p4schp4sch
5,245217
5,245217
add a comment |
add a comment |
$begingroup$
Hint: $$left(vert x vert +frac{1}{n}right)^2=x^2+frac{1}{n^2}+2vert x vert frac{1}{n}=f_n^2+2vert x vert frac{1}{n} geq f_n^2 geq 0$$ so $$0 leq f_n le vert x vert+frac{1}{n}$$ and so $$0 leq f_n - vert x vert leq frac{1}{n} rightarrow 0$$
Moral:
Uniform limit of sequence of continuously differentiable function need not be continuously differentiable!
$endgroup$
add a comment |
$begingroup$
Hint: $$left(vert x vert +frac{1}{n}right)^2=x^2+frac{1}{n^2}+2vert x vert frac{1}{n}=f_n^2+2vert x vert frac{1}{n} geq f_n^2 geq 0$$ so $$0 leq f_n le vert x vert+frac{1}{n}$$ and so $$0 leq f_n - vert x vert leq frac{1}{n} rightarrow 0$$
Moral:
Uniform limit of sequence of continuously differentiable function need not be continuously differentiable!
$endgroup$
add a comment |
$begingroup$
Hint: $$left(vert x vert +frac{1}{n}right)^2=x^2+frac{1}{n^2}+2vert x vert frac{1}{n}=f_n^2+2vert x vert frac{1}{n} geq f_n^2 geq 0$$ so $$0 leq f_n le vert x vert+frac{1}{n}$$ and so $$0 leq f_n - vert x vert leq frac{1}{n} rightarrow 0$$
Moral:
Uniform limit of sequence of continuously differentiable function need not be continuously differentiable!
$endgroup$
Hint: $$left(vert x vert +frac{1}{n}right)^2=x^2+frac{1}{n^2}+2vert x vert frac{1}{n}=f_n^2+2vert x vert frac{1}{n} geq f_n^2 geq 0$$ so $$0 leq f_n le vert x vert+frac{1}{n}$$ and so $$0 leq f_n - vert x vert leq frac{1}{n} rightarrow 0$$
Moral:
Uniform limit of sequence of continuously differentiable function need not be continuously differentiable!
edited Dec 5 '18 at 9:42
answered Dec 5 '18 at 9:33
Chinnapparaj RChinnapparaj R
5,4331928
5,4331928
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026863%2fprove-uniform-convergence-of-f-n-x-sqrt-frac1n2-x2-to-fx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown