Line Integrals of Vector Fields, Homework Conundrum












0












$begingroup$


I am a student and I have a conflict with a given answer in the textbook. The question is the following:



Evaluate the line integral $int_C mathbf{F} cdot dmathbf{r}$ for the given vector field $mathbf{F}$ and the specified curve $C$.



$mathbf{F} = mathbf{a} times mathbf{r}$, where $mathbf{a}$ is a constant vector, $mathbf{r} = langle x, y, z rangle$, and $C$ is a straight line segment from $mathbf{r}_1$ to $mathbf{r}_2$.



Here is my solution:



$$int_C mathbf{F} cdot dmathbf{r} = int_C (mathbf{a} times mathbf{r}) cdot dmathbf{r} = 0$$
because the triple product of coplanar vectors vanishes.



However, the solution given is $mathbf{r}_2 cdot (mathbf{a} times mathbf{r}_1)$.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    I don't see a triple product of coplanar vectors. How about writing $r=r_1+t(r_2-r_1)$ and actually doing the integration?
    $endgroup$
    – Lord Shark the Unknown
    Dec 10 '18 at 6:54










  • $begingroup$
    @LordSharktheUnknown So I suppose I've learned that $mathbf{r}$ and $dmathbf{r}$ are not necessarily parallel. Thank you for the comment. I have solved the problem.
    $endgroup$
    – Davis Rash
    Dec 10 '18 at 7:44












  • $begingroup$
    @LordSharktheUnknown Oh my God, I have just now realized how stupid I am. Of course $mathbf{r}$ and $dmathbf{r}$ are not parallel. Shame.
    $endgroup$
    – Davis Rash
    Dec 10 '18 at 7:47
















0












$begingroup$


I am a student and I have a conflict with a given answer in the textbook. The question is the following:



Evaluate the line integral $int_C mathbf{F} cdot dmathbf{r}$ for the given vector field $mathbf{F}$ and the specified curve $C$.



$mathbf{F} = mathbf{a} times mathbf{r}$, where $mathbf{a}$ is a constant vector, $mathbf{r} = langle x, y, z rangle$, and $C$ is a straight line segment from $mathbf{r}_1$ to $mathbf{r}_2$.



Here is my solution:



$$int_C mathbf{F} cdot dmathbf{r} = int_C (mathbf{a} times mathbf{r}) cdot dmathbf{r} = 0$$
because the triple product of coplanar vectors vanishes.



However, the solution given is $mathbf{r}_2 cdot (mathbf{a} times mathbf{r}_1)$.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    I don't see a triple product of coplanar vectors. How about writing $r=r_1+t(r_2-r_1)$ and actually doing the integration?
    $endgroup$
    – Lord Shark the Unknown
    Dec 10 '18 at 6:54










  • $begingroup$
    @LordSharktheUnknown So I suppose I've learned that $mathbf{r}$ and $dmathbf{r}$ are not necessarily parallel. Thank you for the comment. I have solved the problem.
    $endgroup$
    – Davis Rash
    Dec 10 '18 at 7:44












  • $begingroup$
    @LordSharktheUnknown Oh my God, I have just now realized how stupid I am. Of course $mathbf{r}$ and $dmathbf{r}$ are not parallel. Shame.
    $endgroup$
    – Davis Rash
    Dec 10 '18 at 7:47














0












0








0





$begingroup$


I am a student and I have a conflict with a given answer in the textbook. The question is the following:



Evaluate the line integral $int_C mathbf{F} cdot dmathbf{r}$ for the given vector field $mathbf{F}$ and the specified curve $C$.



$mathbf{F} = mathbf{a} times mathbf{r}$, where $mathbf{a}$ is a constant vector, $mathbf{r} = langle x, y, z rangle$, and $C$ is a straight line segment from $mathbf{r}_1$ to $mathbf{r}_2$.



Here is my solution:



$$int_C mathbf{F} cdot dmathbf{r} = int_C (mathbf{a} times mathbf{r}) cdot dmathbf{r} = 0$$
because the triple product of coplanar vectors vanishes.



However, the solution given is $mathbf{r}_2 cdot (mathbf{a} times mathbf{r}_1)$.










share|cite|improve this question









$endgroup$




I am a student and I have a conflict with a given answer in the textbook. The question is the following:



Evaluate the line integral $int_C mathbf{F} cdot dmathbf{r}$ for the given vector field $mathbf{F}$ and the specified curve $C$.



$mathbf{F} = mathbf{a} times mathbf{r}$, where $mathbf{a}$ is a constant vector, $mathbf{r} = langle x, y, z rangle$, and $C$ is a straight line segment from $mathbf{r}_1$ to $mathbf{r}_2$.



Here is my solution:



$$int_C mathbf{F} cdot dmathbf{r} = int_C (mathbf{a} times mathbf{r}) cdot dmathbf{r} = 0$$
because the triple product of coplanar vectors vanishes.



However, the solution given is $mathbf{r}_2 cdot (mathbf{a} times mathbf{r}_1)$.







multivariable-calculus line-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 10 '18 at 6:51









Davis RashDavis Rash

357412




357412








  • 1




    $begingroup$
    I don't see a triple product of coplanar vectors. How about writing $r=r_1+t(r_2-r_1)$ and actually doing the integration?
    $endgroup$
    – Lord Shark the Unknown
    Dec 10 '18 at 6:54










  • $begingroup$
    @LordSharktheUnknown So I suppose I've learned that $mathbf{r}$ and $dmathbf{r}$ are not necessarily parallel. Thank you for the comment. I have solved the problem.
    $endgroup$
    – Davis Rash
    Dec 10 '18 at 7:44












  • $begingroup$
    @LordSharktheUnknown Oh my God, I have just now realized how stupid I am. Of course $mathbf{r}$ and $dmathbf{r}$ are not parallel. Shame.
    $endgroup$
    – Davis Rash
    Dec 10 '18 at 7:47














  • 1




    $begingroup$
    I don't see a triple product of coplanar vectors. How about writing $r=r_1+t(r_2-r_1)$ and actually doing the integration?
    $endgroup$
    – Lord Shark the Unknown
    Dec 10 '18 at 6:54










  • $begingroup$
    @LordSharktheUnknown So I suppose I've learned that $mathbf{r}$ and $dmathbf{r}$ are not necessarily parallel. Thank you for the comment. I have solved the problem.
    $endgroup$
    – Davis Rash
    Dec 10 '18 at 7:44












  • $begingroup$
    @LordSharktheUnknown Oh my God, I have just now realized how stupid I am. Of course $mathbf{r}$ and $dmathbf{r}$ are not parallel. Shame.
    $endgroup$
    – Davis Rash
    Dec 10 '18 at 7:47








1




1




$begingroup$
I don't see a triple product of coplanar vectors. How about writing $r=r_1+t(r_2-r_1)$ and actually doing the integration?
$endgroup$
– Lord Shark the Unknown
Dec 10 '18 at 6:54




$begingroup$
I don't see a triple product of coplanar vectors. How about writing $r=r_1+t(r_2-r_1)$ and actually doing the integration?
$endgroup$
– Lord Shark the Unknown
Dec 10 '18 at 6:54












$begingroup$
@LordSharktheUnknown So I suppose I've learned that $mathbf{r}$ and $dmathbf{r}$ are not necessarily parallel. Thank you for the comment. I have solved the problem.
$endgroup$
– Davis Rash
Dec 10 '18 at 7:44






$begingroup$
@LordSharktheUnknown So I suppose I've learned that $mathbf{r}$ and $dmathbf{r}$ are not necessarily parallel. Thank you for the comment. I have solved the problem.
$endgroup$
– Davis Rash
Dec 10 '18 at 7:44














$begingroup$
@LordSharktheUnknown Oh my God, I have just now realized how stupid I am. Of course $mathbf{r}$ and $dmathbf{r}$ are not parallel. Shame.
$endgroup$
– Davis Rash
Dec 10 '18 at 7:47




$begingroup$
@LordSharktheUnknown Oh my God, I have just now realized how stupid I am. Of course $mathbf{r}$ and $dmathbf{r}$ are not parallel. Shame.
$endgroup$
– Davis Rash
Dec 10 '18 at 7:47










1 Answer
1






active

oldest

votes


















0












$begingroup$

With the help of the comment by Lord Shark the Unknown, I let
begin{align}
mathbf{r} & = mathbf{r}_1 + t(mathbf{r}_2 - mathbf{r}_1) \
Longrightarrow quad dmathbf{r} & = (mathbf{r}_2 - mathbf{r}_1),dt.
end{align}



We now have
begin{align}
mathbf{a} times mathbf{r} & = mathbf{a} times mathbf{r}_1 + t(mathbf{r}_2 - mathbf{r}_1) \
& = mathbf{a} times mathbf{r}_1 + tmathbf{a} times (mathbf{r}_2 - mathbf{r}_1).
end{align}



And finally
begin{align}
int_C mathbf{F} cdot dmathbf{r} & = int_0^1 (mathbf{a} times mathbf{r}_1 + tmathbf{a} times (mathbf{r}_2 - mathbf{r}_1)) cdot (mathbf{r}_2 - mathbf{r}_1),dt \
& = int_0^1 (mathbf{a} times mathbf{r}_1) cdot (mathbf{r}_2 - mathbf{r}_1),dt \
& = int_0^1 (mathbf{a} times mathbf{r}_1) cdot mathbf{r}_2,dt = (mathbf{a} times mathbf{r}_1) cdot mathbf{r}_2.
end{align}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033557%2fline-integrals-of-vector-fields-homework-conundrum%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    With the help of the comment by Lord Shark the Unknown, I let
    begin{align}
    mathbf{r} & = mathbf{r}_1 + t(mathbf{r}_2 - mathbf{r}_1) \
    Longrightarrow quad dmathbf{r} & = (mathbf{r}_2 - mathbf{r}_1),dt.
    end{align}



    We now have
    begin{align}
    mathbf{a} times mathbf{r} & = mathbf{a} times mathbf{r}_1 + t(mathbf{r}_2 - mathbf{r}_1) \
    & = mathbf{a} times mathbf{r}_1 + tmathbf{a} times (mathbf{r}_2 - mathbf{r}_1).
    end{align}



    And finally
    begin{align}
    int_C mathbf{F} cdot dmathbf{r} & = int_0^1 (mathbf{a} times mathbf{r}_1 + tmathbf{a} times (mathbf{r}_2 - mathbf{r}_1)) cdot (mathbf{r}_2 - mathbf{r}_1),dt \
    & = int_0^1 (mathbf{a} times mathbf{r}_1) cdot (mathbf{r}_2 - mathbf{r}_1),dt \
    & = int_0^1 (mathbf{a} times mathbf{r}_1) cdot mathbf{r}_2,dt = (mathbf{a} times mathbf{r}_1) cdot mathbf{r}_2.
    end{align}






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      With the help of the comment by Lord Shark the Unknown, I let
      begin{align}
      mathbf{r} & = mathbf{r}_1 + t(mathbf{r}_2 - mathbf{r}_1) \
      Longrightarrow quad dmathbf{r} & = (mathbf{r}_2 - mathbf{r}_1),dt.
      end{align}



      We now have
      begin{align}
      mathbf{a} times mathbf{r} & = mathbf{a} times mathbf{r}_1 + t(mathbf{r}_2 - mathbf{r}_1) \
      & = mathbf{a} times mathbf{r}_1 + tmathbf{a} times (mathbf{r}_2 - mathbf{r}_1).
      end{align}



      And finally
      begin{align}
      int_C mathbf{F} cdot dmathbf{r} & = int_0^1 (mathbf{a} times mathbf{r}_1 + tmathbf{a} times (mathbf{r}_2 - mathbf{r}_1)) cdot (mathbf{r}_2 - mathbf{r}_1),dt \
      & = int_0^1 (mathbf{a} times mathbf{r}_1) cdot (mathbf{r}_2 - mathbf{r}_1),dt \
      & = int_0^1 (mathbf{a} times mathbf{r}_1) cdot mathbf{r}_2,dt = (mathbf{a} times mathbf{r}_1) cdot mathbf{r}_2.
      end{align}






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        With the help of the comment by Lord Shark the Unknown, I let
        begin{align}
        mathbf{r} & = mathbf{r}_1 + t(mathbf{r}_2 - mathbf{r}_1) \
        Longrightarrow quad dmathbf{r} & = (mathbf{r}_2 - mathbf{r}_1),dt.
        end{align}



        We now have
        begin{align}
        mathbf{a} times mathbf{r} & = mathbf{a} times mathbf{r}_1 + t(mathbf{r}_2 - mathbf{r}_1) \
        & = mathbf{a} times mathbf{r}_1 + tmathbf{a} times (mathbf{r}_2 - mathbf{r}_1).
        end{align}



        And finally
        begin{align}
        int_C mathbf{F} cdot dmathbf{r} & = int_0^1 (mathbf{a} times mathbf{r}_1 + tmathbf{a} times (mathbf{r}_2 - mathbf{r}_1)) cdot (mathbf{r}_2 - mathbf{r}_1),dt \
        & = int_0^1 (mathbf{a} times mathbf{r}_1) cdot (mathbf{r}_2 - mathbf{r}_1),dt \
        & = int_0^1 (mathbf{a} times mathbf{r}_1) cdot mathbf{r}_2,dt = (mathbf{a} times mathbf{r}_1) cdot mathbf{r}_2.
        end{align}






        share|cite|improve this answer









        $endgroup$



        With the help of the comment by Lord Shark the Unknown, I let
        begin{align}
        mathbf{r} & = mathbf{r}_1 + t(mathbf{r}_2 - mathbf{r}_1) \
        Longrightarrow quad dmathbf{r} & = (mathbf{r}_2 - mathbf{r}_1),dt.
        end{align}



        We now have
        begin{align}
        mathbf{a} times mathbf{r} & = mathbf{a} times mathbf{r}_1 + t(mathbf{r}_2 - mathbf{r}_1) \
        & = mathbf{a} times mathbf{r}_1 + tmathbf{a} times (mathbf{r}_2 - mathbf{r}_1).
        end{align}



        And finally
        begin{align}
        int_C mathbf{F} cdot dmathbf{r} & = int_0^1 (mathbf{a} times mathbf{r}_1 + tmathbf{a} times (mathbf{r}_2 - mathbf{r}_1)) cdot (mathbf{r}_2 - mathbf{r}_1),dt \
        & = int_0^1 (mathbf{a} times mathbf{r}_1) cdot (mathbf{r}_2 - mathbf{r}_1),dt \
        & = int_0^1 (mathbf{a} times mathbf{r}_1) cdot mathbf{r}_2,dt = (mathbf{a} times mathbf{r}_1) cdot mathbf{r}_2.
        end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 10 '18 at 7:43









        Davis RashDavis Rash

        357412




        357412






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033557%2fline-integrals-of-vector-fields-homework-conundrum%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

            How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...