Compute the limit or show it doesn't exist: $lim_{nto infty}(sinsqrt{n+1} - sinsqrt{n})$












0












$begingroup$



Determine the following limit, or show it doesn't exist:
$$lim_{nto infty}(sinsqrt{n+1} - sinsqrt{n}) .$$




I'm not sure how to proceed. I know that I can't use limit arithmetic because both $lim_{nto infty}sinsqrt{n+1}$ and $lim_{nto infty}sinsqrt{n}$ diverge, although I'm not really sure that fact is all that useful in solving this.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    use the mean value theorem
    $endgroup$
    – user124910
    Dec 18 '18 at 4:05






  • 1




    $begingroup$
    $sinalpha-sinbeta=ldots$
    $endgroup$
    – Artem
    Dec 18 '18 at 4:10
















0












$begingroup$



Determine the following limit, or show it doesn't exist:
$$lim_{nto infty}(sinsqrt{n+1} - sinsqrt{n}) .$$




I'm not sure how to proceed. I know that I can't use limit arithmetic because both $lim_{nto infty}sinsqrt{n+1}$ and $lim_{nto infty}sinsqrt{n}$ diverge, although I'm not really sure that fact is all that useful in solving this.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    use the mean value theorem
    $endgroup$
    – user124910
    Dec 18 '18 at 4:05






  • 1




    $begingroup$
    $sinalpha-sinbeta=ldots$
    $endgroup$
    – Artem
    Dec 18 '18 at 4:10














0












0








0


1



$begingroup$



Determine the following limit, or show it doesn't exist:
$$lim_{nto infty}(sinsqrt{n+1} - sinsqrt{n}) .$$




I'm not sure how to proceed. I know that I can't use limit arithmetic because both $lim_{nto infty}sinsqrt{n+1}$ and $lim_{nto infty}sinsqrt{n}$ diverge, although I'm not really sure that fact is all that useful in solving this.










share|cite|improve this question











$endgroup$





Determine the following limit, or show it doesn't exist:
$$lim_{nto infty}(sinsqrt{n+1} - sinsqrt{n}) .$$




I'm not sure how to proceed. I know that I can't use limit arithmetic because both $lim_{nto infty}sinsqrt{n+1}$ and $lim_{nto infty}sinsqrt{n}$ diverge, although I'm not really sure that fact is all that useful in solving this.







calculus limits trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 18 '18 at 4:24









tatan

5,82462760




5,82462760










asked Dec 18 '18 at 4:02









J. LastinJ. Lastin

1367




1367








  • 2




    $begingroup$
    use the mean value theorem
    $endgroup$
    – user124910
    Dec 18 '18 at 4:05






  • 1




    $begingroup$
    $sinalpha-sinbeta=ldots$
    $endgroup$
    – Artem
    Dec 18 '18 at 4:10














  • 2




    $begingroup$
    use the mean value theorem
    $endgroup$
    – user124910
    Dec 18 '18 at 4:05






  • 1




    $begingroup$
    $sinalpha-sinbeta=ldots$
    $endgroup$
    – Artem
    Dec 18 '18 at 4:10








2




2




$begingroup$
use the mean value theorem
$endgroup$
– user124910
Dec 18 '18 at 4:05




$begingroup$
use the mean value theorem
$endgroup$
– user124910
Dec 18 '18 at 4:05




1




1




$begingroup$
$sinalpha-sinbeta=ldots$
$endgroup$
– Artem
Dec 18 '18 at 4:10




$begingroup$
$sinalpha-sinbeta=ldots$
$endgroup$
– Artem
Dec 18 '18 at 4:10










4 Answers
4






active

oldest

votes


















2












$begingroup$

Hint Since $sin$ is differentiable and $| {sin x} | leq 1$ for all (real) $x$, we have
$$|sin x - sin y| leq |x - y| .$$




Taking $x = sqrt{n + 1}$ and $y = sqrt{n}$ gives gives that the quantity $sin sqrt{n + 1} - sin sqrt{n}$ whose limit we're evaluating is bounded above in absolute value by $$sqrt{n + 1} - sqrt{n} = frac{1}{sqrt{n + 1} + sqrt{n}} leq frac{1}{2 sqrt{n}} .$$







share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    $sin x < x $
    $|sin sqrt{x+1} - sin sqrt{x}| leq |sqrt{x+1} - sqrt{x}| = dfrac{1}{|sqrt{x+1} + sqrt{x}|} to 0$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      $$sinsqrt{x+1}-sinsqrt x=2sindfrac{sqrt{x+1}-sqrt x}2cosdfrac{sqrt{x+1}+sqrt x}2$$



      For real $y,-1lecos yle1$



      For $lim_{xtoinfty}sin(...)=lim_{...}sindfrac1{2(sqrt{x+1}+sqrt x)}=?$






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        By the mean value theorem,



        $|sin(sqrt{n+1}) - sin(sqrt{n})| leq |cos(theta_n)||sqrt{n+1}-sqrt{n}|$ and $|cos(theta_n)| leq 1$ for all n. Now its easy to finish.






        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044759%2fcompute-the-limit-or-show-it-doesnt-exist-lim-n-to-infty-sin-sqrtn1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Hint Since $sin$ is differentiable and $| {sin x} | leq 1$ for all (real) $x$, we have
          $$|sin x - sin y| leq |x - y| .$$




          Taking $x = sqrt{n + 1}$ and $y = sqrt{n}$ gives gives that the quantity $sin sqrt{n + 1} - sin sqrt{n}$ whose limit we're evaluating is bounded above in absolute value by $$sqrt{n + 1} - sqrt{n} = frac{1}{sqrt{n + 1} + sqrt{n}} leq frac{1}{2 sqrt{n}} .$$







          share|cite|improve this answer









          $endgroup$


















            2












            $begingroup$

            Hint Since $sin$ is differentiable and $| {sin x} | leq 1$ for all (real) $x$, we have
            $$|sin x - sin y| leq |x - y| .$$




            Taking $x = sqrt{n + 1}$ and $y = sqrt{n}$ gives gives that the quantity $sin sqrt{n + 1} - sin sqrt{n}$ whose limit we're evaluating is bounded above in absolute value by $$sqrt{n + 1} - sqrt{n} = frac{1}{sqrt{n + 1} + sqrt{n}} leq frac{1}{2 sqrt{n}} .$$







            share|cite|improve this answer









            $endgroup$
















              2












              2








              2





              $begingroup$

              Hint Since $sin$ is differentiable and $| {sin x} | leq 1$ for all (real) $x$, we have
              $$|sin x - sin y| leq |x - y| .$$




              Taking $x = sqrt{n + 1}$ and $y = sqrt{n}$ gives gives that the quantity $sin sqrt{n + 1} - sin sqrt{n}$ whose limit we're evaluating is bounded above in absolute value by $$sqrt{n + 1} - sqrt{n} = frac{1}{sqrt{n + 1} + sqrt{n}} leq frac{1}{2 sqrt{n}} .$$







              share|cite|improve this answer









              $endgroup$



              Hint Since $sin$ is differentiable and $| {sin x} | leq 1$ for all (real) $x$, we have
              $$|sin x - sin y| leq |x - y| .$$




              Taking $x = sqrt{n + 1}$ and $y = sqrt{n}$ gives gives that the quantity $sin sqrt{n + 1} - sin sqrt{n}$ whose limit we're evaluating is bounded above in absolute value by $$sqrt{n + 1} - sqrt{n} = frac{1}{sqrt{n + 1} + sqrt{n}} leq frac{1}{2 sqrt{n}} .$$








              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 18 '18 at 4:18









              TravisTravis

              63.7k769151




              63.7k769151























                  2












                  $begingroup$

                  $sin x < x $
                  $|sin sqrt{x+1} - sin sqrt{x}| leq |sqrt{x+1} - sqrt{x}| = dfrac{1}{|sqrt{x+1} + sqrt{x}|} to 0$






                  share|cite|improve this answer









                  $endgroup$


















                    2












                    $begingroup$

                    $sin x < x $
                    $|sin sqrt{x+1} - sin sqrt{x}| leq |sqrt{x+1} - sqrt{x}| = dfrac{1}{|sqrt{x+1} + sqrt{x}|} to 0$






                    share|cite|improve this answer









                    $endgroup$
















                      2












                      2








                      2





                      $begingroup$

                      $sin x < x $
                      $|sin sqrt{x+1} - sin sqrt{x}| leq |sqrt{x+1} - sqrt{x}| = dfrac{1}{|sqrt{x+1} + sqrt{x}|} to 0$






                      share|cite|improve this answer









                      $endgroup$



                      $sin x < x $
                      $|sin sqrt{x+1} - sin sqrt{x}| leq |sqrt{x+1} - sqrt{x}| = dfrac{1}{|sqrt{x+1} + sqrt{x}|} to 0$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 18 '18 at 4:16









                      kayushkayush

                      2,215826




                      2,215826























                          0












                          $begingroup$

                          $$sinsqrt{x+1}-sinsqrt x=2sindfrac{sqrt{x+1}-sqrt x}2cosdfrac{sqrt{x+1}+sqrt x}2$$



                          For real $y,-1lecos yle1$



                          For $lim_{xtoinfty}sin(...)=lim_{...}sindfrac1{2(sqrt{x+1}+sqrt x)}=?$






                          share|cite|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            $$sinsqrt{x+1}-sinsqrt x=2sindfrac{sqrt{x+1}-sqrt x}2cosdfrac{sqrt{x+1}+sqrt x}2$$



                            For real $y,-1lecos yle1$



                            For $lim_{xtoinfty}sin(...)=lim_{...}sindfrac1{2(sqrt{x+1}+sqrt x)}=?$






                            share|cite|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              $$sinsqrt{x+1}-sinsqrt x=2sindfrac{sqrt{x+1}-sqrt x}2cosdfrac{sqrt{x+1}+sqrt x}2$$



                              For real $y,-1lecos yle1$



                              For $lim_{xtoinfty}sin(...)=lim_{...}sindfrac1{2(sqrt{x+1}+sqrt x)}=?$






                              share|cite|improve this answer









                              $endgroup$



                              $$sinsqrt{x+1}-sinsqrt x=2sindfrac{sqrt{x+1}-sqrt x}2cosdfrac{sqrt{x+1}+sqrt x}2$$



                              For real $y,-1lecos yle1$



                              For $lim_{xtoinfty}sin(...)=lim_{...}sindfrac1{2(sqrt{x+1}+sqrt x)}=?$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 18 '18 at 4:43









                              lab bhattacharjeelab bhattacharjee

                              227k15158277




                              227k15158277























                                  0












                                  $begingroup$

                                  By the mean value theorem,



                                  $|sin(sqrt{n+1}) - sin(sqrt{n})| leq |cos(theta_n)||sqrt{n+1}-sqrt{n}|$ and $|cos(theta_n)| leq 1$ for all n. Now its easy to finish.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    By the mean value theorem,



                                    $|sin(sqrt{n+1}) - sin(sqrt{n})| leq |cos(theta_n)||sqrt{n+1}-sqrt{n}|$ and $|cos(theta_n)| leq 1$ for all n. Now its easy to finish.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      By the mean value theorem,



                                      $|sin(sqrt{n+1}) - sin(sqrt{n})| leq |cos(theta_n)||sqrt{n+1}-sqrt{n}|$ and $|cos(theta_n)| leq 1$ for all n. Now its easy to finish.






                                      share|cite|improve this answer









                                      $endgroup$



                                      By the mean value theorem,



                                      $|sin(sqrt{n+1}) - sin(sqrt{n})| leq |cos(theta_n)||sqrt{n+1}-sqrt{n}|$ and $|cos(theta_n)| leq 1$ for all n. Now its easy to finish.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 18 '18 at 4:53









                                      Mustafa SaidMustafa Said

                                      3,0611913




                                      3,0611913






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044759%2fcompute-the-limit-or-show-it-doesnt-exist-lim-n-to-infty-sin-sqrtn1%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Plaza Victoria

                                          Puebla de Zaragoza

                                          Musa