General Solution for Partial Differential Equation

Multi tool use
Multi tool use












3












$begingroup$


To be honest I'm a bit lost on this, and I would like to get a hint or something that can help me, thanks.
I need to find the general solution $U(x,y,z)$ of the next equation:



$$U_{xx}+U_{yy}+4U_{zz}-2U_{xy}+4U_{xz}-4U_{yz}=xyz$$



I know that most sure exists a change of variable that would help to solve the equation, but I don't know how to find it, our teacher of Multivariable Calculus asked to solve this.
Thanks!










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    To be honest I'm a bit lost on this, and I would like to get a hint or something that can help me, thanks.
    I need to find the general solution $U(x,y,z)$ of the next equation:



    $$U_{xx}+U_{yy}+4U_{zz}-2U_{xy}+4U_{xz}-4U_{yz}=xyz$$



    I know that most sure exists a change of variable that would help to solve the equation, but I don't know how to find it, our teacher of Multivariable Calculus asked to solve this.
    Thanks!










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      2



      $begingroup$


      To be honest I'm a bit lost on this, and I would like to get a hint or something that can help me, thanks.
      I need to find the general solution $U(x,y,z)$ of the next equation:



      $$U_{xx}+U_{yy}+4U_{zz}-2U_{xy}+4U_{xz}-4U_{yz}=xyz$$



      I know that most sure exists a change of variable that would help to solve the equation, but I don't know how to find it, our teacher of Multivariable Calculus asked to solve this.
      Thanks!










      share|cite|improve this question











      $endgroup$




      To be honest I'm a bit lost on this, and I would like to get a hint or something that can help me, thanks.
      I need to find the general solution $U(x,y,z)$ of the next equation:



      $$U_{xx}+U_{yy}+4U_{zz}-2U_{xy}+4U_{xz}-4U_{yz}=xyz$$



      I know that most sure exists a change of variable that would help to solve the equation, but I don't know how to find it, our teacher of Multivariable Calculus asked to solve this.
      Thanks!







      multivariable-calculus partial-derivative






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 18 '18 at 19:27









      mathreadler

      15.3k72263




      15.3k72263










      asked Dec 18 '18 at 19:04









      GingerGinger

      475




      475






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          This PDE is linear so it's solution can be obtained as



          $$
          U = U_h + U_p
          $$



          We have



          $$
          left(partial_{xx}^2+partial_{yy}^2+4partial_{zz}^2-2partial_xpartial_y + 4partial_xpartial_z-4partial_ypartial_zright)U = left(partial_x-partial_y+2partial_zright)^2U = x y z
          $$



          so calling



          $$
          V = left(partial_x-partial_y+2partial_zright)U
          $$



          we have



          $$
          left(partial_x-partial_y+2partial_zright)V = x y z
          $$



          using the characteristic method, we have



          $$
          frac{dx}{1}=frac{dy}{-1} = frac{dz}{2}
          $$



          giving the characteristics



          $$
          x+y = eta\
          2y+z = xi\
          2x-z = mu
          $$



          Choosing instead



          $$
          x-y = eta\
          2y+z = xi\
          2x-z = mu
          $$



          because $xi + mu = 2(x+y)$ and introducing now this change of variables into the full PDE we will obtain



          $$
          V_{eta}(eta ,xi ,mu )=frac{1}{64} (2 eta -mu +xi ) (-2 eta +mu +xi ) (2 eta +mu +xi )
          $$



          now considering $V = V_h + V_p$ this PDE can be easily solved.



          $$
          V_h(eta ,xi ,mu) = C_1+f(xi,mu)
          $$



          In this case $V_p(eta,xi,mu)$ is a polynomial form.



          Finally after solving $V$ we will solve



          $$
          left(partial_x-partial_y+2partial_zright)U = V
          $$



          with the same process.



          NOTE



          Here



          $$
          V_p(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right)
          $$



          then



          $$
          V(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right) + f(xi,mu)
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So how do you turn $xyz$ into that RHS expression?
            $endgroup$
            – mathreadler
            Dec 18 '18 at 19:20












          • $begingroup$
            @mathreadler Linearity is a great ally!
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:25










          • $begingroup$
            I doubt someone just trying to start to learn it can get it if I can't get it.
            $endgroup$
            – mathreadler
            Dec 18 '18 at 19:26










          • $begingroup$
            @mathreadler Try to walk with shorter steps.
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:29










          • $begingroup$
            @mathreadler Some additional information was included. I hope it helps now.
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:52












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045561%2fgeneral-solution-for-partial-differential-equation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          This PDE is linear so it's solution can be obtained as



          $$
          U = U_h + U_p
          $$



          We have



          $$
          left(partial_{xx}^2+partial_{yy}^2+4partial_{zz}^2-2partial_xpartial_y + 4partial_xpartial_z-4partial_ypartial_zright)U = left(partial_x-partial_y+2partial_zright)^2U = x y z
          $$



          so calling



          $$
          V = left(partial_x-partial_y+2partial_zright)U
          $$



          we have



          $$
          left(partial_x-partial_y+2partial_zright)V = x y z
          $$



          using the characteristic method, we have



          $$
          frac{dx}{1}=frac{dy}{-1} = frac{dz}{2}
          $$



          giving the characteristics



          $$
          x+y = eta\
          2y+z = xi\
          2x-z = mu
          $$



          Choosing instead



          $$
          x-y = eta\
          2y+z = xi\
          2x-z = mu
          $$



          because $xi + mu = 2(x+y)$ and introducing now this change of variables into the full PDE we will obtain



          $$
          V_{eta}(eta ,xi ,mu )=frac{1}{64} (2 eta -mu +xi ) (-2 eta +mu +xi ) (2 eta +mu +xi )
          $$



          now considering $V = V_h + V_p$ this PDE can be easily solved.



          $$
          V_h(eta ,xi ,mu) = C_1+f(xi,mu)
          $$



          In this case $V_p(eta,xi,mu)$ is a polynomial form.



          Finally after solving $V$ we will solve



          $$
          left(partial_x-partial_y+2partial_zright)U = V
          $$



          with the same process.



          NOTE



          Here



          $$
          V_p(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right)
          $$



          then



          $$
          V(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right) + f(xi,mu)
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So how do you turn $xyz$ into that RHS expression?
            $endgroup$
            – mathreadler
            Dec 18 '18 at 19:20












          • $begingroup$
            @mathreadler Linearity is a great ally!
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:25










          • $begingroup$
            I doubt someone just trying to start to learn it can get it if I can't get it.
            $endgroup$
            – mathreadler
            Dec 18 '18 at 19:26










          • $begingroup$
            @mathreadler Try to walk with shorter steps.
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:29










          • $begingroup$
            @mathreadler Some additional information was included. I hope it helps now.
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:52
















          1












          $begingroup$

          This PDE is linear so it's solution can be obtained as



          $$
          U = U_h + U_p
          $$



          We have



          $$
          left(partial_{xx}^2+partial_{yy}^2+4partial_{zz}^2-2partial_xpartial_y + 4partial_xpartial_z-4partial_ypartial_zright)U = left(partial_x-partial_y+2partial_zright)^2U = x y z
          $$



          so calling



          $$
          V = left(partial_x-partial_y+2partial_zright)U
          $$



          we have



          $$
          left(partial_x-partial_y+2partial_zright)V = x y z
          $$



          using the characteristic method, we have



          $$
          frac{dx}{1}=frac{dy}{-1} = frac{dz}{2}
          $$



          giving the characteristics



          $$
          x+y = eta\
          2y+z = xi\
          2x-z = mu
          $$



          Choosing instead



          $$
          x-y = eta\
          2y+z = xi\
          2x-z = mu
          $$



          because $xi + mu = 2(x+y)$ and introducing now this change of variables into the full PDE we will obtain



          $$
          V_{eta}(eta ,xi ,mu )=frac{1}{64} (2 eta -mu +xi ) (-2 eta +mu +xi ) (2 eta +mu +xi )
          $$



          now considering $V = V_h + V_p$ this PDE can be easily solved.



          $$
          V_h(eta ,xi ,mu) = C_1+f(xi,mu)
          $$



          In this case $V_p(eta,xi,mu)$ is a polynomial form.



          Finally after solving $V$ we will solve



          $$
          left(partial_x-partial_y+2partial_zright)U = V
          $$



          with the same process.



          NOTE



          Here



          $$
          V_p(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right)
          $$



          then



          $$
          V(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right) + f(xi,mu)
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So how do you turn $xyz$ into that RHS expression?
            $endgroup$
            – mathreadler
            Dec 18 '18 at 19:20












          • $begingroup$
            @mathreadler Linearity is a great ally!
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:25










          • $begingroup$
            I doubt someone just trying to start to learn it can get it if I can't get it.
            $endgroup$
            – mathreadler
            Dec 18 '18 at 19:26










          • $begingroup$
            @mathreadler Try to walk with shorter steps.
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:29










          • $begingroup$
            @mathreadler Some additional information was included. I hope it helps now.
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:52














          1












          1








          1





          $begingroup$

          This PDE is linear so it's solution can be obtained as



          $$
          U = U_h + U_p
          $$



          We have



          $$
          left(partial_{xx}^2+partial_{yy}^2+4partial_{zz}^2-2partial_xpartial_y + 4partial_xpartial_z-4partial_ypartial_zright)U = left(partial_x-partial_y+2partial_zright)^2U = x y z
          $$



          so calling



          $$
          V = left(partial_x-partial_y+2partial_zright)U
          $$



          we have



          $$
          left(partial_x-partial_y+2partial_zright)V = x y z
          $$



          using the characteristic method, we have



          $$
          frac{dx}{1}=frac{dy}{-1} = frac{dz}{2}
          $$



          giving the characteristics



          $$
          x+y = eta\
          2y+z = xi\
          2x-z = mu
          $$



          Choosing instead



          $$
          x-y = eta\
          2y+z = xi\
          2x-z = mu
          $$



          because $xi + mu = 2(x+y)$ and introducing now this change of variables into the full PDE we will obtain



          $$
          V_{eta}(eta ,xi ,mu )=frac{1}{64} (2 eta -mu +xi ) (-2 eta +mu +xi ) (2 eta +mu +xi )
          $$



          now considering $V = V_h + V_p$ this PDE can be easily solved.



          $$
          V_h(eta ,xi ,mu) = C_1+f(xi,mu)
          $$



          In this case $V_p(eta,xi,mu)$ is a polynomial form.



          Finally after solving $V$ we will solve



          $$
          left(partial_x-partial_y+2partial_zright)U = V
          $$



          with the same process.



          NOTE



          Here



          $$
          V_p(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right)
          $$



          then



          $$
          V(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right) + f(xi,mu)
          $$






          share|cite|improve this answer











          $endgroup$



          This PDE is linear so it's solution can be obtained as



          $$
          U = U_h + U_p
          $$



          We have



          $$
          left(partial_{xx}^2+partial_{yy}^2+4partial_{zz}^2-2partial_xpartial_y + 4partial_xpartial_z-4partial_ypartial_zright)U = left(partial_x-partial_y+2partial_zright)^2U = x y z
          $$



          so calling



          $$
          V = left(partial_x-partial_y+2partial_zright)U
          $$



          we have



          $$
          left(partial_x-partial_y+2partial_zright)V = x y z
          $$



          using the characteristic method, we have



          $$
          frac{dx}{1}=frac{dy}{-1} = frac{dz}{2}
          $$



          giving the characteristics



          $$
          x+y = eta\
          2y+z = xi\
          2x-z = mu
          $$



          Choosing instead



          $$
          x-y = eta\
          2y+z = xi\
          2x-z = mu
          $$



          because $xi + mu = 2(x+y)$ and introducing now this change of variables into the full PDE we will obtain



          $$
          V_{eta}(eta ,xi ,mu )=frac{1}{64} (2 eta -mu +xi ) (-2 eta +mu +xi ) (2 eta +mu +xi )
          $$



          now considering $V = V_h + V_p$ this PDE can be easily solved.



          $$
          V_h(eta ,xi ,mu) = C_1+f(xi,mu)
          $$



          In this case $V_p(eta,xi,mu)$ is a polynomial form.



          Finally after solving $V$ we will solve



          $$
          left(partial_x-partial_y+2partial_zright)U = V
          $$



          with the same process.



          NOTE



          Here



          $$
          V_p(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right)
          $$



          then



          $$
          V(eta ,xi ,mu) = frac{1}{192} eta left(-6 eta ^3+4 eta ^2 (mu -xi )+3 eta (mu +xi )^2-3 (mu -xi ) (mu +xi )^2right) + f(xi,mu)
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 20 '18 at 9:19

























          answered Dec 18 '18 at 19:17









          CesareoCesareo

          9,4923517




          9,4923517












          • $begingroup$
            So how do you turn $xyz$ into that RHS expression?
            $endgroup$
            – mathreadler
            Dec 18 '18 at 19:20












          • $begingroup$
            @mathreadler Linearity is a great ally!
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:25










          • $begingroup$
            I doubt someone just trying to start to learn it can get it if I can't get it.
            $endgroup$
            – mathreadler
            Dec 18 '18 at 19:26










          • $begingroup$
            @mathreadler Try to walk with shorter steps.
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:29










          • $begingroup$
            @mathreadler Some additional information was included. I hope it helps now.
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:52


















          • $begingroup$
            So how do you turn $xyz$ into that RHS expression?
            $endgroup$
            – mathreadler
            Dec 18 '18 at 19:20












          • $begingroup$
            @mathreadler Linearity is a great ally!
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:25










          • $begingroup$
            I doubt someone just trying to start to learn it can get it if I can't get it.
            $endgroup$
            – mathreadler
            Dec 18 '18 at 19:26










          • $begingroup$
            @mathreadler Try to walk with shorter steps.
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:29










          • $begingroup$
            @mathreadler Some additional information was included. I hope it helps now.
            $endgroup$
            – Cesareo
            Dec 18 '18 at 19:52
















          $begingroup$
          So how do you turn $xyz$ into that RHS expression?
          $endgroup$
          – mathreadler
          Dec 18 '18 at 19:20






          $begingroup$
          So how do you turn $xyz$ into that RHS expression?
          $endgroup$
          – mathreadler
          Dec 18 '18 at 19:20














          $begingroup$
          @mathreadler Linearity is a great ally!
          $endgroup$
          – Cesareo
          Dec 18 '18 at 19:25




          $begingroup$
          @mathreadler Linearity is a great ally!
          $endgroup$
          – Cesareo
          Dec 18 '18 at 19:25












          $begingroup$
          I doubt someone just trying to start to learn it can get it if I can't get it.
          $endgroup$
          – mathreadler
          Dec 18 '18 at 19:26




          $begingroup$
          I doubt someone just trying to start to learn it can get it if I can't get it.
          $endgroup$
          – mathreadler
          Dec 18 '18 at 19:26












          $begingroup$
          @mathreadler Try to walk with shorter steps.
          $endgroup$
          – Cesareo
          Dec 18 '18 at 19:29




          $begingroup$
          @mathreadler Try to walk with shorter steps.
          $endgroup$
          – Cesareo
          Dec 18 '18 at 19:29












          $begingroup$
          @mathreadler Some additional information was included. I hope it helps now.
          $endgroup$
          – Cesareo
          Dec 18 '18 at 19:52




          $begingroup$
          @mathreadler Some additional information was included. I hope it helps now.
          $endgroup$
          – Cesareo
          Dec 18 '18 at 19:52


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045561%2fgeneral-solution-for-partial-differential-equation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          D,hDGVOsq,m,Hg9y3zeXK2B0bVnvpKadnxBTC 0Uuq58sKJKk4OS,gflbvlbkUMmPK,C,x v8xK6
          XRgy6YxSYOKCCod,zXUh4dEjlAXpPcGm,tmsE8G,2 pR5oxN7O5 cxmm OLNxYR0fA1aqvPTfSC,vQPPel

          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Change location of user folders through cmd or PowerShell?