Dependence on the initial datum of the strong solution of a SDE











up vote
0
down vote

favorite
1












Let





  • $(Omega,mathcal A,operatorname P)$ be a probability space


  • $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A)$


  • $W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$


  • $b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$left|b(t,x)-b(t,y)right|^2+left|sigma(t,x)-sigma(t,y)right|^2le K|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag1$$ and $$left|b(t,x)right|^2+left|sigma(t,x)right|^2le Kleft(1+left|xright|^2right);;;text{for all }(t,x)in[0,infty)timesmathbb Rtag2$$


  • $mathcal V_s$ denote the space of real-valued $(mathcal F_t)_{tge s}$-adapted continuous processes $(X_t)_{tge s}$ on $(Omega,mathcal A,operatorname P)$ with $$left|Xright|_{mathcal V_s}:=operatorname Eleft[sup_{tge s}left|X_tright|^2right]<infty$$ for $sge0$


We know that $mathcal V_s$ equipped with $left|;cdot;right|_{mathcal V_s}$ is a complete semi-normed space and that $$Xi^x_s(X):=x+left(int_s^ub(t,X_t):{rm d}tright)_{uge s}+left(int_s^usigma(t,X_t):{rm d}W_tright)_{uge s}inmathcal V_s;;;text{for }Xinmathcal V_s$$ has a unique fixed point $X^{s,:x}$ for all $xinmathbb R$ and $sge0$. For simplicity, let $X^x:=X^{0,:x}$ for $xinmathbb R$.




How do we need to understand the claim $$X_u^{s,:X^x_s}=X_s^x+int_s^ubleft(t,X^{s,:X^x_s}_tright):{rm d}t+int_s^usigmaleft(t,X^{s,:X^x_s}_tright):{rm d}W_ttag3$$ for all $uge s$ almost surely for all $(s,x)in[0,infty)timesmathbb R$ and how can we prove it?




I guess this can be proven in a similar way as we can prove $$Xint_{t_0}^tPhi:{rm d}W=int_{t_0}^tXPhi:{rm d}W;;;text{for all }tge t_0text{ almost surely}tag4$$ for all $(mathcal F_t)_{tge t_0}$-progressive processes $(Phi_t)_{tge t_0}$ with $$operatorname Eleft[int_{t_0}^tleft|Phi_sright|^2:{rm d}sright]<infty;;;text{for all }tge t_0tag5$$ and bounded $mathcal F_{t_0}$-measurable $X:Omegatomathbb R$, for all $t_0ge0$.



So, maybe $(3)$ follows by a more general result.










share|cite|improve this question




























    up vote
    0
    down vote

    favorite
    1












    Let





    • $(Omega,mathcal A,operatorname P)$ be a probability space


    • $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A)$


    • $W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$


    • $b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$left|b(t,x)-b(t,y)right|^2+left|sigma(t,x)-sigma(t,y)right|^2le K|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag1$$ and $$left|b(t,x)right|^2+left|sigma(t,x)right|^2le Kleft(1+left|xright|^2right);;;text{for all }(t,x)in[0,infty)timesmathbb Rtag2$$


    • $mathcal V_s$ denote the space of real-valued $(mathcal F_t)_{tge s}$-adapted continuous processes $(X_t)_{tge s}$ on $(Omega,mathcal A,operatorname P)$ with $$left|Xright|_{mathcal V_s}:=operatorname Eleft[sup_{tge s}left|X_tright|^2right]<infty$$ for $sge0$


    We know that $mathcal V_s$ equipped with $left|;cdot;right|_{mathcal V_s}$ is a complete semi-normed space and that $$Xi^x_s(X):=x+left(int_s^ub(t,X_t):{rm d}tright)_{uge s}+left(int_s^usigma(t,X_t):{rm d}W_tright)_{uge s}inmathcal V_s;;;text{for }Xinmathcal V_s$$ has a unique fixed point $X^{s,:x}$ for all $xinmathbb R$ and $sge0$. For simplicity, let $X^x:=X^{0,:x}$ for $xinmathbb R$.




    How do we need to understand the claim $$X_u^{s,:X^x_s}=X_s^x+int_s^ubleft(t,X^{s,:X^x_s}_tright):{rm d}t+int_s^usigmaleft(t,X^{s,:X^x_s}_tright):{rm d}W_ttag3$$ for all $uge s$ almost surely for all $(s,x)in[0,infty)timesmathbb R$ and how can we prove it?




    I guess this can be proven in a similar way as we can prove $$Xint_{t_0}^tPhi:{rm d}W=int_{t_0}^tXPhi:{rm d}W;;;text{for all }tge t_0text{ almost surely}tag4$$ for all $(mathcal F_t)_{tge t_0}$-progressive processes $(Phi_t)_{tge t_0}$ with $$operatorname Eleft[int_{t_0}^tleft|Phi_sright|^2:{rm d}sright]<infty;;;text{for all }tge t_0tag5$$ and bounded $mathcal F_{t_0}$-measurable $X:Omegatomathbb R$, for all $t_0ge0$.



    So, maybe $(3)$ follows by a more general result.










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A)$


      • $W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$


      • $b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$left|b(t,x)-b(t,y)right|^2+left|sigma(t,x)-sigma(t,y)right|^2le K|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag1$$ and $$left|b(t,x)right|^2+left|sigma(t,x)right|^2le Kleft(1+left|xright|^2right);;;text{for all }(t,x)in[0,infty)timesmathbb Rtag2$$


      • $mathcal V_s$ denote the space of real-valued $(mathcal F_t)_{tge s}$-adapted continuous processes $(X_t)_{tge s}$ on $(Omega,mathcal A,operatorname P)$ with $$left|Xright|_{mathcal V_s}:=operatorname Eleft[sup_{tge s}left|X_tright|^2right]<infty$$ for $sge0$


      We know that $mathcal V_s$ equipped with $left|;cdot;right|_{mathcal V_s}$ is a complete semi-normed space and that $$Xi^x_s(X):=x+left(int_s^ub(t,X_t):{rm d}tright)_{uge s}+left(int_s^usigma(t,X_t):{rm d}W_tright)_{uge s}inmathcal V_s;;;text{for }Xinmathcal V_s$$ has a unique fixed point $X^{s,:x}$ for all $xinmathbb R$ and $sge0$. For simplicity, let $X^x:=X^{0,:x}$ for $xinmathbb R$.




      How do we need to understand the claim $$X_u^{s,:X^x_s}=X_s^x+int_s^ubleft(t,X^{s,:X^x_s}_tright):{rm d}t+int_s^usigmaleft(t,X^{s,:X^x_s}_tright):{rm d}W_ttag3$$ for all $uge s$ almost surely for all $(s,x)in[0,infty)timesmathbb R$ and how can we prove it?




      I guess this can be proven in a similar way as we can prove $$Xint_{t_0}^tPhi:{rm d}W=int_{t_0}^tXPhi:{rm d}W;;;text{for all }tge t_0text{ almost surely}tag4$$ for all $(mathcal F_t)_{tge t_0}$-progressive processes $(Phi_t)_{tge t_0}$ with $$operatorname Eleft[int_{t_0}^tleft|Phi_sright|^2:{rm d}sright]<infty;;;text{for all }tge t_0tag5$$ and bounded $mathcal F_{t_0}$-measurable $X:Omegatomathbb R$, for all $t_0ge0$.



      So, maybe $(3)$ follows by a more general result.










      share|cite|improve this question















      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A)$


      • $W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$


      • $b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$left|b(t,x)-b(t,y)right|^2+left|sigma(t,x)-sigma(t,y)right|^2le K|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag1$$ and $$left|b(t,x)right|^2+left|sigma(t,x)right|^2le Kleft(1+left|xright|^2right);;;text{for all }(t,x)in[0,infty)timesmathbb Rtag2$$


      • $mathcal V_s$ denote the space of real-valued $(mathcal F_t)_{tge s}$-adapted continuous processes $(X_t)_{tge s}$ on $(Omega,mathcal A,operatorname P)$ with $$left|Xright|_{mathcal V_s}:=operatorname Eleft[sup_{tge s}left|X_tright|^2right]<infty$$ for $sge0$


      We know that $mathcal V_s$ equipped with $left|;cdot;right|_{mathcal V_s}$ is a complete semi-normed space and that $$Xi^x_s(X):=x+left(int_s^ub(t,X_t):{rm d}tright)_{uge s}+left(int_s^usigma(t,X_t):{rm d}W_tright)_{uge s}inmathcal V_s;;;text{for }Xinmathcal V_s$$ has a unique fixed point $X^{s,:x}$ for all $xinmathbb R$ and $sge0$. For simplicity, let $X^x:=X^{0,:x}$ for $xinmathbb R$.




      How do we need to understand the claim $$X_u^{s,:X^x_s}=X_s^x+int_s^ubleft(t,X^{s,:X^x_s}_tright):{rm d}t+int_s^usigmaleft(t,X^{s,:X^x_s}_tright):{rm d}W_ttag3$$ for all $uge s$ almost surely for all $(s,x)in[0,infty)timesmathbb R$ and how can we prove it?




      I guess this can be proven in a similar way as we can prove $$Xint_{t_0}^tPhi:{rm d}W=int_{t_0}^tXPhi:{rm d}W;;;text{for all }tge t_0text{ almost surely}tag4$$ for all $(mathcal F_t)_{tge t_0}$-progressive processes $(Phi_t)_{tge t_0}$ with $$operatorname Eleft[int_{t_0}^tleft|Phi_sright|^2:{rm d}sright]<infty;;;text{for all }tge t_0tag5$$ and bounded $mathcal F_{t_0}$-measurable $X:Omegatomathbb R$, for all $t_0ge0$.



      So, maybe $(3)$ follows by a more general result.







      stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis sde






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 17 at 20:04

























      asked Nov 15 at 20:42









      0xbadf00d

      1,86041428




      1,86041428



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000297%2fdependence-on-the-initial-datum-of-the-strong-solution-of-a-sde%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000297%2fdependence-on-the-initial-datum-of-the-strong-solution-of-a-sde%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa