Dependence on the initial datum of the strong solution of a SDE
up vote
0
down vote
favorite
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A)$
$W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$
$b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$left|b(t,x)-b(t,y)right|^2+left|sigma(t,x)-sigma(t,y)right|^2le K|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag1$$ and $$left|b(t,x)right|^2+left|sigma(t,x)right|^2le Kleft(1+left|xright|^2right);;;text{for all }(t,x)in[0,infty)timesmathbb Rtag2$$
$mathcal V_s$ denote the space of real-valued $(mathcal F_t)_{tge s}$-adapted continuous processes $(X_t)_{tge s}$ on $(Omega,mathcal A,operatorname P)$ with $$left|Xright|_{mathcal V_s}:=operatorname Eleft[sup_{tge s}left|X_tright|^2right]<infty$$ for $sge0$
We know that $mathcal V_s$ equipped with $left|;cdot;right|_{mathcal V_s}$ is a complete semi-normed space and that $$Xi^x_s(X):=x+left(int_s^ub(t,X_t):{rm d}tright)_{uge s}+left(int_s^usigma(t,X_t):{rm d}W_tright)_{uge s}inmathcal V_s;;;text{for }Xinmathcal V_s$$ has a unique fixed point $X^{s,:x}$ for all $xinmathbb R$ and $sge0$. For simplicity, let $X^x:=X^{0,:x}$ for $xinmathbb R$.
How do we need to understand the claim $$X_u^{s,:X^x_s}=X_s^x+int_s^ubleft(t,X^{s,:X^x_s}_tright):{rm d}t+int_s^usigmaleft(t,X^{s,:X^x_s}_tright):{rm d}W_ttag3$$ for all $uge s$ almost surely for all $(s,x)in[0,infty)timesmathbb R$ and how can we prove it?
I guess this can be proven in a similar way as we can prove $$Xint_{t_0}^tPhi:{rm d}W=int_{t_0}^tXPhi:{rm d}W;;;text{for all }tge t_0text{ almost surely}tag4$$ for all $(mathcal F_t)_{tge t_0}$-progressive processes $(Phi_t)_{tge t_0}$ with $$operatorname Eleft[int_{t_0}^tleft|Phi_sright|^2:{rm d}sright]<infty;;;text{for all }tge t_0tag5$$ and bounded $mathcal F_{t_0}$-measurable $X:Omegatomathbb R$, for all $t_0ge0$.
So, maybe $(3)$ follows by a more general result.
stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis sde
add a comment |
up vote
0
down vote
favorite
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A)$
$W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$
$b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$left|b(t,x)-b(t,y)right|^2+left|sigma(t,x)-sigma(t,y)right|^2le K|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag1$$ and $$left|b(t,x)right|^2+left|sigma(t,x)right|^2le Kleft(1+left|xright|^2right);;;text{for all }(t,x)in[0,infty)timesmathbb Rtag2$$
$mathcal V_s$ denote the space of real-valued $(mathcal F_t)_{tge s}$-adapted continuous processes $(X_t)_{tge s}$ on $(Omega,mathcal A,operatorname P)$ with $$left|Xright|_{mathcal V_s}:=operatorname Eleft[sup_{tge s}left|X_tright|^2right]<infty$$ for $sge0$
We know that $mathcal V_s$ equipped with $left|;cdot;right|_{mathcal V_s}$ is a complete semi-normed space and that $$Xi^x_s(X):=x+left(int_s^ub(t,X_t):{rm d}tright)_{uge s}+left(int_s^usigma(t,X_t):{rm d}W_tright)_{uge s}inmathcal V_s;;;text{for }Xinmathcal V_s$$ has a unique fixed point $X^{s,:x}$ for all $xinmathbb R$ and $sge0$. For simplicity, let $X^x:=X^{0,:x}$ for $xinmathbb R$.
How do we need to understand the claim $$X_u^{s,:X^x_s}=X_s^x+int_s^ubleft(t,X^{s,:X^x_s}_tright):{rm d}t+int_s^usigmaleft(t,X^{s,:X^x_s}_tright):{rm d}W_ttag3$$ for all $uge s$ almost surely for all $(s,x)in[0,infty)timesmathbb R$ and how can we prove it?
I guess this can be proven in a similar way as we can prove $$Xint_{t_0}^tPhi:{rm d}W=int_{t_0}^tXPhi:{rm d}W;;;text{for all }tge t_0text{ almost surely}tag4$$ for all $(mathcal F_t)_{tge t_0}$-progressive processes $(Phi_t)_{tge t_0}$ with $$operatorname Eleft[int_{t_0}^tleft|Phi_sright|^2:{rm d}sright]<infty;;;text{for all }tge t_0tag5$$ and bounded $mathcal F_{t_0}$-measurable $X:Omegatomathbb R$, for all $t_0ge0$.
So, maybe $(3)$ follows by a more general result.
stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis sde
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A)$
$W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$
$b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$left|b(t,x)-b(t,y)right|^2+left|sigma(t,x)-sigma(t,y)right|^2le K|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag1$$ and $$left|b(t,x)right|^2+left|sigma(t,x)right|^2le Kleft(1+left|xright|^2right);;;text{for all }(t,x)in[0,infty)timesmathbb Rtag2$$
$mathcal V_s$ denote the space of real-valued $(mathcal F_t)_{tge s}$-adapted continuous processes $(X_t)_{tge s}$ on $(Omega,mathcal A,operatorname P)$ with $$left|Xright|_{mathcal V_s}:=operatorname Eleft[sup_{tge s}left|X_tright|^2right]<infty$$ for $sge0$
We know that $mathcal V_s$ equipped with $left|;cdot;right|_{mathcal V_s}$ is a complete semi-normed space and that $$Xi^x_s(X):=x+left(int_s^ub(t,X_t):{rm d}tright)_{uge s}+left(int_s^usigma(t,X_t):{rm d}W_tright)_{uge s}inmathcal V_s;;;text{for }Xinmathcal V_s$$ has a unique fixed point $X^{s,:x}$ for all $xinmathbb R$ and $sge0$. For simplicity, let $X^x:=X^{0,:x}$ for $xinmathbb R$.
How do we need to understand the claim $$X_u^{s,:X^x_s}=X_s^x+int_s^ubleft(t,X^{s,:X^x_s}_tright):{rm d}t+int_s^usigmaleft(t,X^{s,:X^x_s}_tright):{rm d}W_ttag3$$ for all $uge s$ almost surely for all $(s,x)in[0,infty)timesmathbb R$ and how can we prove it?
I guess this can be proven in a similar way as we can prove $$Xint_{t_0}^tPhi:{rm d}W=int_{t_0}^tXPhi:{rm d}W;;;text{for all }tge t_0text{ almost surely}tag4$$ for all $(mathcal F_t)_{tge t_0}$-progressive processes $(Phi_t)_{tge t_0}$ with $$operatorname Eleft[int_{t_0}^tleft|Phi_sright|^2:{rm d}sright]<infty;;;text{for all }tge t_0tag5$$ and bounded $mathcal F_{t_0}$-measurable $X:Omegatomathbb R$, for all $t_0ge0$.
So, maybe $(3)$ follows by a more general result.
stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis sde
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A)$
$W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$
$b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$left|b(t,x)-b(t,y)right|^2+left|sigma(t,x)-sigma(t,y)right|^2le K|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag1$$ and $$left|b(t,x)right|^2+left|sigma(t,x)right|^2le Kleft(1+left|xright|^2right);;;text{for all }(t,x)in[0,infty)timesmathbb Rtag2$$
$mathcal V_s$ denote the space of real-valued $(mathcal F_t)_{tge s}$-adapted continuous processes $(X_t)_{tge s}$ on $(Omega,mathcal A,operatorname P)$ with $$left|Xright|_{mathcal V_s}:=operatorname Eleft[sup_{tge s}left|X_tright|^2right]<infty$$ for $sge0$
We know that $mathcal V_s$ equipped with $left|;cdot;right|_{mathcal V_s}$ is a complete semi-normed space and that $$Xi^x_s(X):=x+left(int_s^ub(t,X_t):{rm d}tright)_{uge s}+left(int_s^usigma(t,X_t):{rm d}W_tright)_{uge s}inmathcal V_s;;;text{for }Xinmathcal V_s$$ has a unique fixed point $X^{s,:x}$ for all $xinmathbb R$ and $sge0$. For simplicity, let $X^x:=X^{0,:x}$ for $xinmathbb R$.
How do we need to understand the claim $$X_u^{s,:X^x_s}=X_s^x+int_s^ubleft(t,X^{s,:X^x_s}_tright):{rm d}t+int_s^usigmaleft(t,X^{s,:X^x_s}_tright):{rm d}W_ttag3$$ for all $uge s$ almost surely for all $(s,x)in[0,infty)timesmathbb R$ and how can we prove it?
I guess this can be proven in a similar way as we can prove $$Xint_{t_0}^tPhi:{rm d}W=int_{t_0}^tXPhi:{rm d}W;;;text{for all }tge t_0text{ almost surely}tag4$$ for all $(mathcal F_t)_{tge t_0}$-progressive processes $(Phi_t)_{tge t_0}$ with $$operatorname Eleft[int_{t_0}^tleft|Phi_sright|^2:{rm d}sright]<infty;;;text{for all }tge t_0tag5$$ and bounded $mathcal F_{t_0}$-measurable $X:Omegatomathbb R$, for all $t_0ge0$.
So, maybe $(3)$ follows by a more general result.
stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis sde
stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis sde
edited Nov 17 at 20:04
asked Nov 15 at 20:42
0xbadf00d
1,86041428
1,86041428
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000297%2fdependence-on-the-initial-datum-of-the-strong-solution-of-a-sde%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown