Question on Infinitely Differentiable Functions [duplicate]











up vote
3
down vote

favorite
1













This question already has an answer here:




  • Let $f:(-1,1) rightarrow mathbb{R}$ be smooth on $(-1,1)$, $f(0) = 1$. Find $f(x)$.

    1 answer




Let $f:(-1,1)rightarrowmathbb R$ be infinitely differentiable on $(-1,1)$ with $f(0)=1$ and has the following properties:



(1) $vert f^{(n)}(x)vert le n!$ for every $xin (-1, 1)$ and for every $nin mathbb N$



(2) $f'(frac{1}{m+1})=0$ for every $min mathbb N$



I need to:



Find the value of $f^{(n)}(0)$ for each $nin mathbb N$



Determine the value of $f(x)$ for every $xin(-1,1)$



I claim that $f^{(n)}(0)=0$ for all $nin mathbb N$ and I wanted to prove this by induction. When $n=1$, we note that by (2), $f'(0)=0$ by the sequential criterion for limits with $mrightarrow infty$. However, I am not sure on how to prove the inductive step.



I note that from (1), we have $f(x)lefrac{1}{1-x}$ by Taylor's Theorem.



Any help is greatly appreciated!










share|cite|improve this question













marked as duplicate by Martin R, Servaes, Community Nov 23 at 11:38


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.



















    up vote
    3
    down vote

    favorite
    1













    This question already has an answer here:




    • Let $f:(-1,1) rightarrow mathbb{R}$ be smooth on $(-1,1)$, $f(0) = 1$. Find $f(x)$.

      1 answer




    Let $f:(-1,1)rightarrowmathbb R$ be infinitely differentiable on $(-1,1)$ with $f(0)=1$ and has the following properties:



    (1) $vert f^{(n)}(x)vert le n!$ for every $xin (-1, 1)$ and for every $nin mathbb N$



    (2) $f'(frac{1}{m+1})=0$ for every $min mathbb N$



    I need to:



    Find the value of $f^{(n)}(0)$ for each $nin mathbb N$



    Determine the value of $f(x)$ for every $xin(-1,1)$



    I claim that $f^{(n)}(0)=0$ for all $nin mathbb N$ and I wanted to prove this by induction. When $n=1$, we note that by (2), $f'(0)=0$ by the sequential criterion for limits with $mrightarrow infty$. However, I am not sure on how to prove the inductive step.



    I note that from (1), we have $f(x)lefrac{1}{1-x}$ by Taylor's Theorem.



    Any help is greatly appreciated!










    share|cite|improve this question













    marked as duplicate by Martin R, Servaes, Community Nov 23 at 11:38


    This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















      up vote
      3
      down vote

      favorite
      1









      up vote
      3
      down vote

      favorite
      1






      1






      This question already has an answer here:




      • Let $f:(-1,1) rightarrow mathbb{R}$ be smooth on $(-1,1)$, $f(0) = 1$. Find $f(x)$.

        1 answer




      Let $f:(-1,1)rightarrowmathbb R$ be infinitely differentiable on $(-1,1)$ with $f(0)=1$ and has the following properties:



      (1) $vert f^{(n)}(x)vert le n!$ for every $xin (-1, 1)$ and for every $nin mathbb N$



      (2) $f'(frac{1}{m+1})=0$ for every $min mathbb N$



      I need to:



      Find the value of $f^{(n)}(0)$ for each $nin mathbb N$



      Determine the value of $f(x)$ for every $xin(-1,1)$



      I claim that $f^{(n)}(0)=0$ for all $nin mathbb N$ and I wanted to prove this by induction. When $n=1$, we note that by (2), $f'(0)=0$ by the sequential criterion for limits with $mrightarrow infty$. However, I am not sure on how to prove the inductive step.



      I note that from (1), we have $f(x)lefrac{1}{1-x}$ by Taylor's Theorem.



      Any help is greatly appreciated!










      share|cite|improve this question














      This question already has an answer here:




      • Let $f:(-1,1) rightarrow mathbb{R}$ be smooth on $(-1,1)$, $f(0) = 1$. Find $f(x)$.

        1 answer




      Let $f:(-1,1)rightarrowmathbb R$ be infinitely differentiable on $(-1,1)$ with $f(0)=1$ and has the following properties:



      (1) $vert f^{(n)}(x)vert le n!$ for every $xin (-1, 1)$ and for every $nin mathbb N$



      (2) $f'(frac{1}{m+1})=0$ for every $min mathbb N$



      I need to:



      Find the value of $f^{(n)}(0)$ for each $nin mathbb N$



      Determine the value of $f(x)$ for every $xin(-1,1)$



      I claim that $f^{(n)}(0)=0$ for all $nin mathbb N$ and I wanted to prove this by induction. When $n=1$, we note that by (2), $f'(0)=0$ by the sequential criterion for limits with $mrightarrow infty$. However, I am not sure on how to prove the inductive step.



      I note that from (1), we have $f(x)lefrac{1}{1-x}$ by Taylor's Theorem.



      Any help is greatly appreciated!





      This question already has an answer here:




      • Let $f:(-1,1) rightarrow mathbb{R}$ be smooth on $(-1,1)$, $f(0) = 1$. Find $f(x)$.

        1 answer








      calculus taylor-expansion






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 23 at 9:08









      Derp

      228214




      228214




      marked as duplicate by Martin R, Servaes, Community Nov 23 at 11:38


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






      marked as duplicate by Martin R, Servaes, Community Nov 23 at 11:38


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
























          2 Answers
          2






          active

          oldest

          votes

















          up vote
          4
          down vote



          accepted










          Rolle's theorem implies that $f''$ has a zero in the interval $(frac{1}{m+2}, frac{1}{m+1})$
          for each $m in Bbb N$, therefore $f''(0) = 0$.



          The same argument can be repeated to show that each derivative $f^{(k)}$ has
          a sequence of zeros converging to $0$.



          (The estimate $vert f^{(n)}(x)vert le n!$ is not needed for this
          conclusion.)






          share|cite|improve this answer























          • Nice answer (+1). I realized that also by my approach the estimate of $n$-th derivative is not needed
            – Robert Z
            Nov 23 at 9:41












          • @RobertZ: Thanks. – As it turns out, the question has been asked and answered before, unfortunately I did not notice that before posting the answer.
            – Martin R
            Nov 23 at 9:57










          • As far as I can see no answers there pointed out that the estimate on $f^{(n)}$ is superfluous.
            – Robert Z
            Nov 23 at 12:51




















          up vote
          2
          down vote













          Hint. Let us consider the case $n=2$ (try by your own the case $n>2$)



          For any $minmathbb{N}$, by using the Taylor expansion of $f'$ at $0$, we have that there exists $t_min (-1,1)$ such that
          $$f'left(frac{1}{m+1}right)=f'(0)+f''(0)cdot frac{1}{m+1}+frac{f'''(t_m)}{2}cdot frac{1}{(m+1)^2}.$$
          Since $f'left(frac{1}{m+1}right)=0$ and we already know that $f'(0)=0$, it follows
          $$f''(0)=-frac{f'''(t_m)}{2}cdot frac{1}{(m+1)}$$
          which implies that as $mto+infty$,
          $$|f''(0)|=frac{|f'''(t_m)|}{2}cdot frac{1} {(m+1)}leqfrac{M_3} {2(m+1)}to 0.$$
          where $M_3=max_{xin[-1/2,1/2]}| f^{(3)}(x)|$ (the assumption $vert f^{(n)}(x)vert le n!$ in $(-1,1)$ is not needed).






          share|cite|improve this answer






























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            4
            down vote



            accepted










            Rolle's theorem implies that $f''$ has a zero in the interval $(frac{1}{m+2}, frac{1}{m+1})$
            for each $m in Bbb N$, therefore $f''(0) = 0$.



            The same argument can be repeated to show that each derivative $f^{(k)}$ has
            a sequence of zeros converging to $0$.



            (The estimate $vert f^{(n)}(x)vert le n!$ is not needed for this
            conclusion.)






            share|cite|improve this answer























            • Nice answer (+1). I realized that also by my approach the estimate of $n$-th derivative is not needed
              – Robert Z
              Nov 23 at 9:41












            • @RobertZ: Thanks. – As it turns out, the question has been asked and answered before, unfortunately I did not notice that before posting the answer.
              – Martin R
              Nov 23 at 9:57










            • As far as I can see no answers there pointed out that the estimate on $f^{(n)}$ is superfluous.
              – Robert Z
              Nov 23 at 12:51

















            up vote
            4
            down vote



            accepted










            Rolle's theorem implies that $f''$ has a zero in the interval $(frac{1}{m+2}, frac{1}{m+1})$
            for each $m in Bbb N$, therefore $f''(0) = 0$.



            The same argument can be repeated to show that each derivative $f^{(k)}$ has
            a sequence of zeros converging to $0$.



            (The estimate $vert f^{(n)}(x)vert le n!$ is not needed for this
            conclusion.)






            share|cite|improve this answer























            • Nice answer (+1). I realized that also by my approach the estimate of $n$-th derivative is not needed
              – Robert Z
              Nov 23 at 9:41












            • @RobertZ: Thanks. – As it turns out, the question has been asked and answered before, unfortunately I did not notice that before posting the answer.
              – Martin R
              Nov 23 at 9:57










            • As far as I can see no answers there pointed out that the estimate on $f^{(n)}$ is superfluous.
              – Robert Z
              Nov 23 at 12:51















            up vote
            4
            down vote



            accepted







            up vote
            4
            down vote



            accepted






            Rolle's theorem implies that $f''$ has a zero in the interval $(frac{1}{m+2}, frac{1}{m+1})$
            for each $m in Bbb N$, therefore $f''(0) = 0$.



            The same argument can be repeated to show that each derivative $f^{(k)}$ has
            a sequence of zeros converging to $0$.



            (The estimate $vert f^{(n)}(x)vert le n!$ is not needed for this
            conclusion.)






            share|cite|improve this answer














            Rolle's theorem implies that $f''$ has a zero in the interval $(frac{1}{m+2}, frac{1}{m+1})$
            for each $m in Bbb N$, therefore $f''(0) = 0$.



            The same argument can be repeated to show that each derivative $f^{(k)}$ has
            a sequence of zeros converging to $0$.



            (The estimate $vert f^{(n)}(x)vert le n!$ is not needed for this
            conclusion.)







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Nov 23 at 9:32

























            answered Nov 23 at 9:21









            Martin R

            26.1k33047




            26.1k33047












            • Nice answer (+1). I realized that also by my approach the estimate of $n$-th derivative is not needed
              – Robert Z
              Nov 23 at 9:41












            • @RobertZ: Thanks. – As it turns out, the question has been asked and answered before, unfortunately I did not notice that before posting the answer.
              – Martin R
              Nov 23 at 9:57










            • As far as I can see no answers there pointed out that the estimate on $f^{(n)}$ is superfluous.
              – Robert Z
              Nov 23 at 12:51




















            • Nice answer (+1). I realized that also by my approach the estimate of $n$-th derivative is not needed
              – Robert Z
              Nov 23 at 9:41












            • @RobertZ: Thanks. – As it turns out, the question has been asked and answered before, unfortunately I did not notice that before posting the answer.
              – Martin R
              Nov 23 at 9:57










            • As far as I can see no answers there pointed out that the estimate on $f^{(n)}$ is superfluous.
              – Robert Z
              Nov 23 at 12:51


















            Nice answer (+1). I realized that also by my approach the estimate of $n$-th derivative is not needed
            – Robert Z
            Nov 23 at 9:41






            Nice answer (+1). I realized that also by my approach the estimate of $n$-th derivative is not needed
            – Robert Z
            Nov 23 at 9:41














            @RobertZ: Thanks. – As it turns out, the question has been asked and answered before, unfortunately I did not notice that before posting the answer.
            – Martin R
            Nov 23 at 9:57




            @RobertZ: Thanks. – As it turns out, the question has been asked and answered before, unfortunately I did not notice that before posting the answer.
            – Martin R
            Nov 23 at 9:57












            As far as I can see no answers there pointed out that the estimate on $f^{(n)}$ is superfluous.
            – Robert Z
            Nov 23 at 12:51






            As far as I can see no answers there pointed out that the estimate on $f^{(n)}$ is superfluous.
            – Robert Z
            Nov 23 at 12:51












            up vote
            2
            down vote













            Hint. Let us consider the case $n=2$ (try by your own the case $n>2$)



            For any $minmathbb{N}$, by using the Taylor expansion of $f'$ at $0$, we have that there exists $t_min (-1,1)$ such that
            $$f'left(frac{1}{m+1}right)=f'(0)+f''(0)cdot frac{1}{m+1}+frac{f'''(t_m)}{2}cdot frac{1}{(m+1)^2}.$$
            Since $f'left(frac{1}{m+1}right)=0$ and we already know that $f'(0)=0$, it follows
            $$f''(0)=-frac{f'''(t_m)}{2}cdot frac{1}{(m+1)}$$
            which implies that as $mto+infty$,
            $$|f''(0)|=frac{|f'''(t_m)|}{2}cdot frac{1} {(m+1)}leqfrac{M_3} {2(m+1)}to 0.$$
            where $M_3=max_{xin[-1/2,1/2]}| f^{(3)}(x)|$ (the assumption $vert f^{(n)}(x)vert le n!$ in $(-1,1)$ is not needed).






            share|cite|improve this answer



























              up vote
              2
              down vote













              Hint. Let us consider the case $n=2$ (try by your own the case $n>2$)



              For any $minmathbb{N}$, by using the Taylor expansion of $f'$ at $0$, we have that there exists $t_min (-1,1)$ such that
              $$f'left(frac{1}{m+1}right)=f'(0)+f''(0)cdot frac{1}{m+1}+frac{f'''(t_m)}{2}cdot frac{1}{(m+1)^2}.$$
              Since $f'left(frac{1}{m+1}right)=0$ and we already know that $f'(0)=0$, it follows
              $$f''(0)=-frac{f'''(t_m)}{2}cdot frac{1}{(m+1)}$$
              which implies that as $mto+infty$,
              $$|f''(0)|=frac{|f'''(t_m)|}{2}cdot frac{1} {(m+1)}leqfrac{M_3} {2(m+1)}to 0.$$
              where $M_3=max_{xin[-1/2,1/2]}| f^{(3)}(x)|$ (the assumption $vert f^{(n)}(x)vert le n!$ in $(-1,1)$ is not needed).






              share|cite|improve this answer

























                up vote
                2
                down vote










                up vote
                2
                down vote









                Hint. Let us consider the case $n=2$ (try by your own the case $n>2$)



                For any $minmathbb{N}$, by using the Taylor expansion of $f'$ at $0$, we have that there exists $t_min (-1,1)$ such that
                $$f'left(frac{1}{m+1}right)=f'(0)+f''(0)cdot frac{1}{m+1}+frac{f'''(t_m)}{2}cdot frac{1}{(m+1)^2}.$$
                Since $f'left(frac{1}{m+1}right)=0$ and we already know that $f'(0)=0$, it follows
                $$f''(0)=-frac{f'''(t_m)}{2}cdot frac{1}{(m+1)}$$
                which implies that as $mto+infty$,
                $$|f''(0)|=frac{|f'''(t_m)|}{2}cdot frac{1} {(m+1)}leqfrac{M_3} {2(m+1)}to 0.$$
                where $M_3=max_{xin[-1/2,1/2]}| f^{(3)}(x)|$ (the assumption $vert f^{(n)}(x)vert le n!$ in $(-1,1)$ is not needed).






                share|cite|improve this answer














                Hint. Let us consider the case $n=2$ (try by your own the case $n>2$)



                For any $minmathbb{N}$, by using the Taylor expansion of $f'$ at $0$, we have that there exists $t_min (-1,1)$ such that
                $$f'left(frac{1}{m+1}right)=f'(0)+f''(0)cdot frac{1}{m+1}+frac{f'''(t_m)}{2}cdot frac{1}{(m+1)^2}.$$
                Since $f'left(frac{1}{m+1}right)=0$ and we already know that $f'(0)=0$, it follows
                $$f''(0)=-frac{f'''(t_m)}{2}cdot frac{1}{(m+1)}$$
                which implies that as $mto+infty$,
                $$|f''(0)|=frac{|f'''(t_m)|}{2}cdot frac{1} {(m+1)}leqfrac{M_3} {2(m+1)}to 0.$$
                where $M_3=max_{xin[-1/2,1/2]}| f^{(3)}(x)|$ (the assumption $vert f^{(n)}(x)vert le n!$ in $(-1,1)$ is not needed).







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 23 at 9:39

























                answered Nov 23 at 9:18









                Robert Z

                91.6k1058129




                91.6k1058129















                    Popular posts from this blog

                    Plaza Victoria

                    How to extract passwords from Mobaxterm Free Version

                    IC on Digikey is 5x more expensive than board containing same IC on Alibaba: How? [on hold]