Calculating $sum_{substack{k|r \ k leq n}} mu left({ {k}}right)$?
Background & Question
I recently thought of a combinatoric method to get an interesting result:
$$ sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) -1 $$
I was wondering how other methods compared to mine in calculating the quantity:
$$sum_{substack{k|r \ k leq n}} mu left({ {k}}right)$$
and then summing over to see how it compared to my result? Also is there any method of calculating it without using the Riemann Hypothesis?
Proof of my method
Consider the following sums:
$$ 1+1 + 1+ 1+1 +underbracedots_{n! text{ times}} = n! $$
$$ 0 + 1+ 0+1 +0 +underbracedots_{n! text{ times}} = frac{n!}{2} $$
$$ 0 + 0+ 1+0 +0 +underbracedots_{n! text{ times}} = frac{n!}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n text{ times}} +1+underbracedots_{n! text{ times}} = frac{n!}{n} $$
Multiplying the $r$th row with $a_r$ which is an arbitrary variable:
$$ a_1+ a_1 + a_1+ a_1+a_1 +underbracedots_{n! text{ times}} = n! a_1 $$
$$ 0 + a_2+ 0+a_2 +0 +underbracedots_{n! text{ times}} =n! frac{a_2}{2} $$
$$ 0 + 0+ a_3+0 +0 +underbracedots_{n! text{ times}} = n! frac{a_3}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n-1 text{ times}} +a_n+underbracedots_{n! text{ times}} = n!frac{a_n}{n} $$
Adding all the above equations vertically (as it is a finite sum):
$$ underbrace{b_1}_{a_1} + underbrace{b_2}_{a_1+a_2}+ underbrace{b_3}_{a_1+a_3} + dots+ b_n +sum_{r=n+1}^{n!} tilde b_r = n!sum_{r=1}^n frac{a_r}{r}$$
Writing the above properly:
$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} tilde b_r = n! sum_{r=1}^n frac{a_r}{r} $$
where $b_r = sum_{r|k} a_k$ and $tilde b_r = sum_{substack{k|r \ kleq n}} a_k $. Using the mobius function we know $ a_{n}=sum_{dmid n}mu left({frac {n}{d}}right)b_{d}$. Re-expressing the expression the above in terms of $b_r$:
$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} sum_{substack{k|r \ kleq n}} sum_{dmid k}mu left({frac {k}{d}}right)b_{d} = n! sum_{r=1}^n frac{sum _{dmid r}mu left({frac {r}{d}}right)b_{d}}{r} $$
Applying $frac{partial}{partial b_1} $ both sides:
$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! sum_{r=1}^n frac{mu left({{r}}right)}{r} $$
Using RH:
$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) $$
combinatorics number-theory mobius-function
add a comment |
Background & Question
I recently thought of a combinatoric method to get an interesting result:
$$ sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) -1 $$
I was wondering how other methods compared to mine in calculating the quantity:
$$sum_{substack{k|r \ k leq n}} mu left({ {k}}right)$$
and then summing over to see how it compared to my result? Also is there any method of calculating it without using the Riemann Hypothesis?
Proof of my method
Consider the following sums:
$$ 1+1 + 1+ 1+1 +underbracedots_{n! text{ times}} = n! $$
$$ 0 + 1+ 0+1 +0 +underbracedots_{n! text{ times}} = frac{n!}{2} $$
$$ 0 + 0+ 1+0 +0 +underbracedots_{n! text{ times}} = frac{n!}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n text{ times}} +1+underbracedots_{n! text{ times}} = frac{n!}{n} $$
Multiplying the $r$th row with $a_r$ which is an arbitrary variable:
$$ a_1+ a_1 + a_1+ a_1+a_1 +underbracedots_{n! text{ times}} = n! a_1 $$
$$ 0 + a_2+ 0+a_2 +0 +underbracedots_{n! text{ times}} =n! frac{a_2}{2} $$
$$ 0 + 0+ a_3+0 +0 +underbracedots_{n! text{ times}} = n! frac{a_3}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n-1 text{ times}} +a_n+underbracedots_{n! text{ times}} = n!frac{a_n}{n} $$
Adding all the above equations vertically (as it is a finite sum):
$$ underbrace{b_1}_{a_1} + underbrace{b_2}_{a_1+a_2}+ underbrace{b_3}_{a_1+a_3} + dots+ b_n +sum_{r=n+1}^{n!} tilde b_r = n!sum_{r=1}^n frac{a_r}{r}$$
Writing the above properly:
$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} tilde b_r = n! sum_{r=1}^n frac{a_r}{r} $$
where $b_r = sum_{r|k} a_k$ and $tilde b_r = sum_{substack{k|r \ kleq n}} a_k $. Using the mobius function we know $ a_{n}=sum_{dmid n}mu left({frac {n}{d}}right)b_{d}$. Re-expressing the expression the above in terms of $b_r$:
$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} sum_{substack{k|r \ kleq n}} sum_{dmid k}mu left({frac {k}{d}}right)b_{d} = n! sum_{r=1}^n frac{sum _{dmid r}mu left({frac {r}{d}}right)b_{d}}{r} $$
Applying $frac{partial}{partial b_1} $ both sides:
$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! sum_{r=1}^n frac{mu left({{r}}right)}{r} $$
Using RH:
$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) $$
combinatorics number-theory mobius-function
You’ve put $rmid k$ but it should be $kmid r$ in all instances.
– Jacob
Nov 26 '18 at 1:39
Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
– Jacob
Nov 26 '18 at 2:03
Made it $k|r$ hopefully everywhere
– More Anonymous
Nov 26 '18 at 11:05
The title still has $rmid k$.
– Gerry Myerson
Nov 27 '18 at 2:49
My bad ... fixed now
– More Anonymous
Nov 27 '18 at 2:53
add a comment |
Background & Question
I recently thought of a combinatoric method to get an interesting result:
$$ sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) -1 $$
I was wondering how other methods compared to mine in calculating the quantity:
$$sum_{substack{k|r \ k leq n}} mu left({ {k}}right)$$
and then summing over to see how it compared to my result? Also is there any method of calculating it without using the Riemann Hypothesis?
Proof of my method
Consider the following sums:
$$ 1+1 + 1+ 1+1 +underbracedots_{n! text{ times}} = n! $$
$$ 0 + 1+ 0+1 +0 +underbracedots_{n! text{ times}} = frac{n!}{2} $$
$$ 0 + 0+ 1+0 +0 +underbracedots_{n! text{ times}} = frac{n!}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n text{ times}} +1+underbracedots_{n! text{ times}} = frac{n!}{n} $$
Multiplying the $r$th row with $a_r$ which is an arbitrary variable:
$$ a_1+ a_1 + a_1+ a_1+a_1 +underbracedots_{n! text{ times}} = n! a_1 $$
$$ 0 + a_2+ 0+a_2 +0 +underbracedots_{n! text{ times}} =n! frac{a_2}{2} $$
$$ 0 + 0+ a_3+0 +0 +underbracedots_{n! text{ times}} = n! frac{a_3}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n-1 text{ times}} +a_n+underbracedots_{n! text{ times}} = n!frac{a_n}{n} $$
Adding all the above equations vertically (as it is a finite sum):
$$ underbrace{b_1}_{a_1} + underbrace{b_2}_{a_1+a_2}+ underbrace{b_3}_{a_1+a_3} + dots+ b_n +sum_{r=n+1}^{n!} tilde b_r = n!sum_{r=1}^n frac{a_r}{r}$$
Writing the above properly:
$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} tilde b_r = n! sum_{r=1}^n frac{a_r}{r} $$
where $b_r = sum_{r|k} a_k$ and $tilde b_r = sum_{substack{k|r \ kleq n}} a_k $. Using the mobius function we know $ a_{n}=sum_{dmid n}mu left({frac {n}{d}}right)b_{d}$. Re-expressing the expression the above in terms of $b_r$:
$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} sum_{substack{k|r \ kleq n}} sum_{dmid k}mu left({frac {k}{d}}right)b_{d} = n! sum_{r=1}^n frac{sum _{dmid r}mu left({frac {r}{d}}right)b_{d}}{r} $$
Applying $frac{partial}{partial b_1} $ both sides:
$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! sum_{r=1}^n frac{mu left({{r}}right)}{r} $$
Using RH:
$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) $$
combinatorics number-theory mobius-function
Background & Question
I recently thought of a combinatoric method to get an interesting result:
$$ sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) -1 $$
I was wondering how other methods compared to mine in calculating the quantity:
$$sum_{substack{k|r \ k leq n}} mu left({ {k}}right)$$
and then summing over to see how it compared to my result? Also is there any method of calculating it without using the Riemann Hypothesis?
Proof of my method
Consider the following sums:
$$ 1+1 + 1+ 1+1 +underbracedots_{n! text{ times}} = n! $$
$$ 0 + 1+ 0+1 +0 +underbracedots_{n! text{ times}} = frac{n!}{2} $$
$$ 0 + 0+ 1+0 +0 +underbracedots_{n! text{ times}} = frac{n!}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n text{ times}} +1+underbracedots_{n! text{ times}} = frac{n!}{n} $$
Multiplying the $r$th row with $a_r$ which is an arbitrary variable:
$$ a_1+ a_1 + a_1+ a_1+a_1 +underbracedots_{n! text{ times}} = n! a_1 $$
$$ 0 + a_2+ 0+a_2 +0 +underbracedots_{n! text{ times}} =n! frac{a_2}{2} $$
$$ 0 + 0+ a_3+0 +0 +underbracedots_{n! text{ times}} = n! frac{a_3}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n-1 text{ times}} +a_n+underbracedots_{n! text{ times}} = n!frac{a_n}{n} $$
Adding all the above equations vertically (as it is a finite sum):
$$ underbrace{b_1}_{a_1} + underbrace{b_2}_{a_1+a_2}+ underbrace{b_3}_{a_1+a_3} + dots+ b_n +sum_{r=n+1}^{n!} tilde b_r = n!sum_{r=1}^n frac{a_r}{r}$$
Writing the above properly:
$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} tilde b_r = n! sum_{r=1}^n frac{a_r}{r} $$
where $b_r = sum_{r|k} a_k$ and $tilde b_r = sum_{substack{k|r \ kleq n}} a_k $. Using the mobius function we know $ a_{n}=sum_{dmid n}mu left({frac {n}{d}}right)b_{d}$. Re-expressing the expression the above in terms of $b_r$:
$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} sum_{substack{k|r \ kleq n}} sum_{dmid k}mu left({frac {k}{d}}right)b_{d} = n! sum_{r=1}^n frac{sum _{dmid r}mu left({frac {r}{d}}right)b_{d}}{r} $$
Applying $frac{partial}{partial b_1} $ both sides:
$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! sum_{r=1}^n frac{mu left({{r}}right)}{r} $$
Using RH:
$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) $$
combinatorics number-theory mobius-function
combinatorics number-theory mobius-function
edited Nov 27 '18 at 2:51
asked Nov 25 '18 at 23:07
More Anonymous
34419
34419
You’ve put $rmid k$ but it should be $kmid r$ in all instances.
– Jacob
Nov 26 '18 at 1:39
Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
– Jacob
Nov 26 '18 at 2:03
Made it $k|r$ hopefully everywhere
– More Anonymous
Nov 26 '18 at 11:05
The title still has $rmid k$.
– Gerry Myerson
Nov 27 '18 at 2:49
My bad ... fixed now
– More Anonymous
Nov 27 '18 at 2:53
add a comment |
You’ve put $rmid k$ but it should be $kmid r$ in all instances.
– Jacob
Nov 26 '18 at 1:39
Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
– Jacob
Nov 26 '18 at 2:03
Made it $k|r$ hopefully everywhere
– More Anonymous
Nov 26 '18 at 11:05
The title still has $rmid k$.
– Gerry Myerson
Nov 27 '18 at 2:49
My bad ... fixed now
– More Anonymous
Nov 27 '18 at 2:53
You’ve put $rmid k$ but it should be $kmid r$ in all instances.
– Jacob
Nov 26 '18 at 1:39
You’ve put $rmid k$ but it should be $kmid r$ in all instances.
– Jacob
Nov 26 '18 at 1:39
Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
– Jacob
Nov 26 '18 at 2:03
Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
– Jacob
Nov 26 '18 at 2:03
Made it $k|r$ hopefully everywhere
– More Anonymous
Nov 26 '18 at 11:05
Made it $k|r$ hopefully everywhere
– More Anonymous
Nov 26 '18 at 11:05
The title still has $rmid k$.
– Gerry Myerson
Nov 27 '18 at 2:49
The title still has $rmid k$.
– Gerry Myerson
Nov 27 '18 at 2:49
My bad ... fixed now
– More Anonymous
Nov 27 '18 at 2:53
My bad ... fixed now
– More Anonymous
Nov 27 '18 at 2:53
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013548%2fcalculating-sum-substackkr-k-leq-n-mu-left-k-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013548%2fcalculating-sum-substackkr-k-leq-n-mu-left-k-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You’ve put $rmid k$ but it should be $kmid r$ in all instances.
– Jacob
Nov 26 '18 at 1:39
Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
– Jacob
Nov 26 '18 at 2:03
Made it $k|r$ hopefully everywhere
– More Anonymous
Nov 26 '18 at 11:05
The title still has $rmid k$.
– Gerry Myerson
Nov 27 '18 at 2:49
My bad ... fixed now
– More Anonymous
Nov 27 '18 at 2:53