Calculating $sum_{substack{k|r \ k leq n}} mu left({ {k}}right)$?












3














Background & Question



I recently thought of a combinatoric method to get an interesting result:



$$ sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) -1 $$



I was wondering how other methods compared to mine in calculating the quantity:



$$sum_{substack{k|r \ k leq n}} mu left({ {k}}right)$$



and then summing over to see how it compared to my result? Also is there any method of calculating it without using the Riemann Hypothesis?



Proof of my method



Consider the following sums:
$$ 1+1 + 1+ 1+1 +underbracedots_{n! text{ times}} = n! $$
$$ 0 + 1+ 0+1 +0 +underbracedots_{n! text{ times}} = frac{n!}{2} $$
$$ 0 + 0+ 1+0 +0 +underbracedots_{n! text{ times}} = frac{n!}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n text{ times}} +1+underbracedots_{n! text{ times}} = frac{n!}{n} $$



Multiplying the $r$th row with $a_r$ which is an arbitrary variable:



$$ a_1+ a_1 + a_1+ a_1+a_1 +underbracedots_{n! text{ times}} = n! a_1 $$
$$ 0 + a_2+ 0+a_2 +0 +underbracedots_{n! text{ times}} =n! frac{a_2}{2} $$
$$ 0 + 0+ a_3+0 +0 +underbracedots_{n! text{ times}} = n! frac{a_3}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n-1 text{ times}} +a_n+underbracedots_{n! text{ times}} = n!frac{a_n}{n} $$



Adding all the above equations vertically (as it is a finite sum):



$$ underbrace{b_1}_{a_1} + underbrace{b_2}_{a_1+a_2}+ underbrace{b_3}_{a_1+a_3} + dots+ b_n +sum_{r=n+1}^{n!} tilde b_r = n!sum_{r=1}^n frac{a_r}{r}$$



Writing the above properly:



$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} tilde b_r = n! sum_{r=1}^n frac{a_r}{r} $$



where $b_r = sum_{r|k} a_k$ and $tilde b_r = sum_{substack{k|r \ kleq n}} a_k $. Using the mobius function we know $ a_{n}=sum_{dmid n}mu left({frac {n}{d}}right)b_{d}$. Re-expressing the expression the above in terms of $b_r$:



$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} sum_{substack{k|r \ kleq n}} sum_{dmid k}mu left({frac {k}{d}}right)b_{d} = n! sum_{r=1}^n frac{sum _{dmid r}mu left({frac {r}{d}}right)b_{d}}{r} $$



Applying $frac{partial}{partial b_1} $ both sides:



$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! sum_{r=1}^n frac{mu left({{r}}right)}{r} $$



Using RH:



$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) $$










share|cite|improve this question
























  • You’ve put $rmid k$ but it should be $kmid r$ in all instances.
    – Jacob
    Nov 26 '18 at 1:39










  • Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
    – Jacob
    Nov 26 '18 at 2:03










  • Made it $k|r$ hopefully everywhere
    – More Anonymous
    Nov 26 '18 at 11:05










  • The title still has $rmid k$.
    – Gerry Myerson
    Nov 27 '18 at 2:49










  • My bad ... fixed now
    – More Anonymous
    Nov 27 '18 at 2:53
















3














Background & Question



I recently thought of a combinatoric method to get an interesting result:



$$ sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) -1 $$



I was wondering how other methods compared to mine in calculating the quantity:



$$sum_{substack{k|r \ k leq n}} mu left({ {k}}right)$$



and then summing over to see how it compared to my result? Also is there any method of calculating it without using the Riemann Hypothesis?



Proof of my method



Consider the following sums:
$$ 1+1 + 1+ 1+1 +underbracedots_{n! text{ times}} = n! $$
$$ 0 + 1+ 0+1 +0 +underbracedots_{n! text{ times}} = frac{n!}{2} $$
$$ 0 + 0+ 1+0 +0 +underbracedots_{n! text{ times}} = frac{n!}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n text{ times}} +1+underbracedots_{n! text{ times}} = frac{n!}{n} $$



Multiplying the $r$th row with $a_r$ which is an arbitrary variable:



$$ a_1+ a_1 + a_1+ a_1+a_1 +underbracedots_{n! text{ times}} = n! a_1 $$
$$ 0 + a_2+ 0+a_2 +0 +underbracedots_{n! text{ times}} =n! frac{a_2}{2} $$
$$ 0 + 0+ a_3+0 +0 +underbracedots_{n! text{ times}} = n! frac{a_3}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n-1 text{ times}} +a_n+underbracedots_{n! text{ times}} = n!frac{a_n}{n} $$



Adding all the above equations vertically (as it is a finite sum):



$$ underbrace{b_1}_{a_1} + underbrace{b_2}_{a_1+a_2}+ underbrace{b_3}_{a_1+a_3} + dots+ b_n +sum_{r=n+1}^{n!} tilde b_r = n!sum_{r=1}^n frac{a_r}{r}$$



Writing the above properly:



$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} tilde b_r = n! sum_{r=1}^n frac{a_r}{r} $$



where $b_r = sum_{r|k} a_k$ and $tilde b_r = sum_{substack{k|r \ kleq n}} a_k $. Using the mobius function we know $ a_{n}=sum_{dmid n}mu left({frac {n}{d}}right)b_{d}$. Re-expressing the expression the above in terms of $b_r$:



$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} sum_{substack{k|r \ kleq n}} sum_{dmid k}mu left({frac {k}{d}}right)b_{d} = n! sum_{r=1}^n frac{sum _{dmid r}mu left({frac {r}{d}}right)b_{d}}{r} $$



Applying $frac{partial}{partial b_1} $ both sides:



$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! sum_{r=1}^n frac{mu left({{r}}right)}{r} $$



Using RH:



$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) $$










share|cite|improve this question
























  • You’ve put $rmid k$ but it should be $kmid r$ in all instances.
    – Jacob
    Nov 26 '18 at 1:39










  • Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
    – Jacob
    Nov 26 '18 at 2:03










  • Made it $k|r$ hopefully everywhere
    – More Anonymous
    Nov 26 '18 at 11:05










  • The title still has $rmid k$.
    – Gerry Myerson
    Nov 27 '18 at 2:49










  • My bad ... fixed now
    – More Anonymous
    Nov 27 '18 at 2:53














3












3








3







Background & Question



I recently thought of a combinatoric method to get an interesting result:



$$ sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) -1 $$



I was wondering how other methods compared to mine in calculating the quantity:



$$sum_{substack{k|r \ k leq n}} mu left({ {k}}right)$$



and then summing over to see how it compared to my result? Also is there any method of calculating it without using the Riemann Hypothesis?



Proof of my method



Consider the following sums:
$$ 1+1 + 1+ 1+1 +underbracedots_{n! text{ times}} = n! $$
$$ 0 + 1+ 0+1 +0 +underbracedots_{n! text{ times}} = frac{n!}{2} $$
$$ 0 + 0+ 1+0 +0 +underbracedots_{n! text{ times}} = frac{n!}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n text{ times}} +1+underbracedots_{n! text{ times}} = frac{n!}{n} $$



Multiplying the $r$th row with $a_r$ which is an arbitrary variable:



$$ a_1+ a_1 + a_1+ a_1+a_1 +underbracedots_{n! text{ times}} = n! a_1 $$
$$ 0 + a_2+ 0+a_2 +0 +underbracedots_{n! text{ times}} =n! frac{a_2}{2} $$
$$ 0 + 0+ a_3+0 +0 +underbracedots_{n! text{ times}} = n! frac{a_3}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n-1 text{ times}} +a_n+underbracedots_{n! text{ times}} = n!frac{a_n}{n} $$



Adding all the above equations vertically (as it is a finite sum):



$$ underbrace{b_1}_{a_1} + underbrace{b_2}_{a_1+a_2}+ underbrace{b_3}_{a_1+a_3} + dots+ b_n +sum_{r=n+1}^{n!} tilde b_r = n!sum_{r=1}^n frac{a_r}{r}$$



Writing the above properly:



$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} tilde b_r = n! sum_{r=1}^n frac{a_r}{r} $$



where $b_r = sum_{r|k} a_k$ and $tilde b_r = sum_{substack{k|r \ kleq n}} a_k $. Using the mobius function we know $ a_{n}=sum_{dmid n}mu left({frac {n}{d}}right)b_{d}$. Re-expressing the expression the above in terms of $b_r$:



$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} sum_{substack{k|r \ kleq n}} sum_{dmid k}mu left({frac {k}{d}}right)b_{d} = n! sum_{r=1}^n frac{sum _{dmid r}mu left({frac {r}{d}}right)b_{d}}{r} $$



Applying $frac{partial}{partial b_1} $ both sides:



$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! sum_{r=1}^n frac{mu left({{r}}right)}{r} $$



Using RH:



$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) $$










share|cite|improve this question















Background & Question



I recently thought of a combinatoric method to get an interesting result:



$$ sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) -1 $$



I was wondering how other methods compared to mine in calculating the quantity:



$$sum_{substack{k|r \ k leq n}} mu left({ {k}}right)$$



and then summing over to see how it compared to my result? Also is there any method of calculating it without using the Riemann Hypothesis?



Proof of my method



Consider the following sums:
$$ 1+1 + 1+ 1+1 +underbracedots_{n! text{ times}} = n! $$
$$ 0 + 1+ 0+1 +0 +underbracedots_{n! text{ times}} = frac{n!}{2} $$
$$ 0 + 0+ 1+0 +0 +underbracedots_{n! text{ times}} = frac{n!}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n text{ times}} +1+underbracedots_{n! text{ times}} = frac{n!}{n} $$



Multiplying the $r$th row with $a_r$ which is an arbitrary variable:



$$ a_1+ a_1 + a_1+ a_1+a_1 +underbracedots_{n! text{ times}} = n! a_1 $$
$$ 0 + a_2+ 0+a_2 +0 +underbracedots_{n! text{ times}} =n! frac{a_2}{2} $$
$$ 0 + 0+ a_3+0 +0 +underbracedots_{n! text{ times}} = n! frac{a_3}{3} $$
We proceed to do so $n$ times:
$$ 0+ 0 +underbracedots_{n-1 text{ times}} +a_n+underbracedots_{n! text{ times}} = n!frac{a_n}{n} $$



Adding all the above equations vertically (as it is a finite sum):



$$ underbrace{b_1}_{a_1} + underbrace{b_2}_{a_1+a_2}+ underbrace{b_3}_{a_1+a_3} + dots+ b_n +sum_{r=n+1}^{n!} tilde b_r = n!sum_{r=1}^n frac{a_r}{r}$$



Writing the above properly:



$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} tilde b_r = n! sum_{r=1}^n frac{a_r}{r} $$



where $b_r = sum_{r|k} a_k$ and $tilde b_r = sum_{substack{k|r \ kleq n}} a_k $. Using the mobius function we know $ a_{n}=sum_{dmid n}mu left({frac {n}{d}}right)b_{d}$. Re-expressing the expression the above in terms of $b_r$:



$$ sum_{r=1}^n b_r + sum_{r=n+1}^{n!} sum_{substack{k|r \ kleq n}} sum_{dmid k}mu left({frac {k}{d}}right)b_{d} = n! sum_{r=1}^n frac{sum _{dmid r}mu left({frac {r}{d}}right)b_{d}}{r} $$



Applying $frac{partial}{partial b_1} $ both sides:



$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! sum_{r=1}^n frac{mu left({{r}}right)}{r} $$



Using RH:



$$ 1 + sum_{r=n+1}^{n!} sum_{substack{k|r \ k leq n}} mu left({ {k}}right) = n! O(frac{1}{sqrt n}) $$







combinatorics number-theory mobius-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 27 '18 at 2:51

























asked Nov 25 '18 at 23:07









More Anonymous

34419




34419












  • You’ve put $rmid k$ but it should be $kmid r$ in all instances.
    – Jacob
    Nov 26 '18 at 1:39










  • Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
    – Jacob
    Nov 26 '18 at 2:03










  • Made it $k|r$ hopefully everywhere
    – More Anonymous
    Nov 26 '18 at 11:05










  • The title still has $rmid k$.
    – Gerry Myerson
    Nov 27 '18 at 2:49










  • My bad ... fixed now
    – More Anonymous
    Nov 27 '18 at 2:53


















  • You’ve put $rmid k$ but it should be $kmid r$ in all instances.
    – Jacob
    Nov 26 '18 at 1:39










  • Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
    – Jacob
    Nov 26 '18 at 2:03










  • Made it $k|r$ hopefully everywhere
    – More Anonymous
    Nov 26 '18 at 11:05










  • The title still has $rmid k$.
    – Gerry Myerson
    Nov 27 '18 at 2:49










  • My bad ... fixed now
    – More Anonymous
    Nov 27 '18 at 2:53
















You’ve put $rmid k$ but it should be $kmid r$ in all instances.
– Jacob
Nov 26 '18 at 1:39




You’ve put $rmid k$ but it should be $kmid r$ in all instances.
– Jacob
Nov 26 '18 at 1:39












Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
– Jacob
Nov 26 '18 at 2:03




Also, if we go straight from our formula for $n!frac{a_k}{k}$ to $sum_{k=1}^{n!}sum_{dmid k \ dleq n}a_d=n!sum_{k=1}^nfrac{a_k}{k}$, and then use $a_k=mu(k)$ we have $n!sum_{k=1}^nfrac{mu(k)}{k}=sum_{k=1}^{n!}sum_{dmid k \ dleq n}mu(d)=left(sum_{k=1}^nsum_{dmid k}mu(d)right)+left(sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)right)$. Since $$sum_{dmid k}mu(d)=begin{cases} 1 & n=1 \ 0 & text{otherwise},end{cases}$$ we end up with $n!sum_{k=1}^nfrac{mu(k)}{k}=1+sum_{k=n+1}^{n!}sum_{dmid k \ dleq n}mu(d)$.
– Jacob
Nov 26 '18 at 2:03












Made it $k|r$ hopefully everywhere
– More Anonymous
Nov 26 '18 at 11:05




Made it $k|r$ hopefully everywhere
– More Anonymous
Nov 26 '18 at 11:05












The title still has $rmid k$.
– Gerry Myerson
Nov 27 '18 at 2:49




The title still has $rmid k$.
– Gerry Myerson
Nov 27 '18 at 2:49












My bad ... fixed now
– More Anonymous
Nov 27 '18 at 2:53




My bad ... fixed now
– More Anonymous
Nov 27 '18 at 2:53










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013548%2fcalculating-sum-substackkr-k-leq-n-mu-left-k-right%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013548%2fcalculating-sum-substackkr-k-leq-n-mu-left-k-right%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa